Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Auftrieb für die molekulare Mikroskopie

12.07.2016

Resonator-verstärkte Raman-Streuung gibt Aufschluss über Struktur und Eigenschaften von Kohlenstoff-Nanoröhrchen.

Nanoröhrchen aus Kohlenstoff lassen sich in unterschiedlichen Größen und Eigenschaften herstellen und sind deshalb für so verschiedene Anwendungsgebiete wie Elektronik, Photonik und Nanomechanik von größtem Interesse. Um so wichtiger ist es, ein Werkzeug an der Hand zu haben, mit dem man diese Eigenschaften schnell und präzise bestimmen kann.


Illustration des experimentellen Aufbaus.

Grafik: MPQ, Abteilung Laserspektroskopie

Gerade die hierfür verantwortlichen chemischen Strukturen lassen sich im Prinzip mit der Methode der Raman-Spektroskopie aufschlüsseln. Doch sind die damit erreichbaren Signale unter normalen Umständen extrem schwach. Ein Team von Forschern der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch (Direktor am Max-Planck-Institut für Quantenoptik und Lehrstuhl für Experimentalphysik an der Ludwig-Maximilians-Universität München) hat jetzt eine Technik entwickelt, die Signale der Raman-Streuung mit Hilfe eines optischen Resonators erheblich zu verstärken.

Durch Kombination von Raman- und Absorptionsmessungen konnten sie die Proben sowohl räumlich abbilden als auch ihre chemische Struktur ermitteln. Im Gegensatz zu anderen Techniken beruht der neue Ansatz allein auf der Verstärkung der Vakuumfluktuationen der elektromagnetischen Felder innerhalb des Resonators. Dabei wird störender Hintergrund vermieden, was die Methode zu einem vielversprechenden Werkzeug für molekulare Abbildungstechniken macht. (Nature Communications, 12. Juli 2016)

Jede Molekülsorte hat ihren eigenen Fingerabdruck von Vibrationsschwingungen, die Information über die chemische Struktur beinhalten. Raman-Spektroskopie erlaubt es, das Vibrationsspektrum effizient optisch nachzuweisen: Monochromatisches Licht, das auf die Probe fällt, regt diese zu einer Vielzahl von Vibrationsschwingungen an. Die Linien, die diesen Energien entsprechen, sind dann im Spektrum des gestreuten Lichtes sichtbar.

Als optische Technik eignet sich der Ansatz auch zur Aufnahme von mikroskopischen Abbildungen. Mit Hilfe der Raman-Mikroskopie erhält man von der Probe ein Bild mit hoher räumlicher Auflösung und Informationen über die chemische Struktur. Daraus ergeben sich vielfältige Anwendungsmöglichkeiten, von der Analyse biologischer Proben bis zur Charakterisierung von Nanomaterialien oder dem Monitoring industrieller Fertigungsprozesse.

Im vorliegenden Experiment kommt diese Methode für die Charakterisierung einzelner Kohlenstoff-Nanoröhrchen zum Einsatz. Diese kommen mit ganz unterschiedlichen Durchmessern und Eigenschaften, etwa metallisch oder halbleitend, vor, und je nachdem haben die Vibrationsschwingungen auch unterschiedliche Frequenzen. Die Raman-Spektroskopie ist somit gerade auf die molekulare Struktur empfindlich, die für diese Eigenschaften verantwortlich ist. Der Haken dabei ist, dass Raman-Streuung nur ein sehr schwaches Signal liefert, was die Abbildung oder die Untersuchung individueller Nanosysteme erschwert.

„Unser Ansatz besteht darin, die Probe, d.h. die auf einem Substrat aufgebrachten Nanoröhrchen, im Zentrum eines mikroskopisch kleinen Resonators zu platzieren, um optische Resonanzen für die Verstärkung der Raman-Signale nutzen zu können. Der Resonator wird rasterförmig über die Probe geführt und fokussiert gleichzeitig das Licht auf einen Fleck mit der Größe nahe dem Beugungslimit, sodass hochauflösende Bilder erzeugt werden können“, erklärt Dr. David Hunger, einer der an diesem Projekt arbeitenden Wissenschaftler.

„Der Resonator verstärkt sowohl den Prozess der Raman-Streuung als auch die Absorption durch die Probe. Dies erlaubt es, in einer einzigen Messung extrem empfindliche Absorptionsmikroskopie mit Raman-Abbildungstechniken zu kombinieren.“

Um einen entsprechend großen Verstärkungseffekt dabei zu erzielen, muss man das Licht in den ultrakleinen Resonatoren für viele tausend Umläufe speichern können. Das ist besonders dann eine Herausforderung, wenn man die Probe rasterförmig abbilden möchte. In dem von David Hunger entwickelten Aufbau besteht eine Seite aus einem ebenen hochreflektiven Spiegel, der gleichzeitig als Träger der Probe dient. Das Gegenstück ist ein stark konkav gekrümmter Mikrospiegel am Ausgang einer optischen Faser. Durch diese Faser wird Licht in den Resonator eingekoppelt.

Der ebene Spiegel mit der Probe wird Punkt für Punkt relativ zur Faser verschoben, um die Probe schrittweise in den Fokus der Resonatormode zu bringen. Gleichzeitig wird der Abstand zwischen den beiden Spiegeln so eingestellt, dass die Resonanzbedingung des Hohlraums jeweils zur Resonanz der Raman-Streuung passt. Dies erfordert eine Genauigkeit bei der Positionierung von einigen 10 Pikometern. „Wir stimmen den Spiegelabstand schrittweise ab, um die Resonanzverstärkung im gesamten interessanten Spektralbereich zu erhalten“, erklärt Thomas Hümmer, der als Doktorand das Experiment durchführt. „Da die Resonanzlinien des Hohlraums extrem schmal sind, kann dies zu einer spektralen Auflösung führen, die weit über die Möglichkeiten konventioneller Raman-Spektroskopie hinausgehen.“

Gleichzeitig wird das Raman-Signal durch den sogenannten Purcell-Effekt verstärkt, der auf die Überhöhung der Vakuumfluktuationen innerhalb der Mikrokavität und die lange Photonen-Lebensdauer zurückgeht. Im Experiment führt dies zu einer Verstärkung des resonanten Raman-Lichtes bis zu einem Faktor 320. Vergleicht man das Netto-Signal, das man von einer einzelnen Raman-Linie aus dem Hohlraumresonator erhält, mit dem Signal des besten konventionellen Mikroskops, dann ist es mehr als 6 mal so gut. Weitere Verbesserungen sollten es erlauben, die Verstärkung noch um Größenordnungen zu erhöhen.

Das volle Potential der Technik zeigt sich aber an der Möglichkeit, sogenannte hyperspektrale Bilder aufzunehmen. Hier werden die Resonator-verstärkten Ramanspektren an vielen Stellen auf dem Spiegel aufgezeichnet. Daraus kann ein räumliches Bild der Probe konstruiert werden, das z.B. die Stärke, Frequenz oder die Form der Raman-Linien abbildet. „In unserem Experiment untersuchen wir einen bestimmten Raman-Übergang, der empfindlich auf den Durchmesser und die elektrischen Eigenschaften der Nanoröhrchen ist. Aus dem Hyperspektrum können wir für eine große Anzahl von einzelnen Nanoröhrchen den Durchmesser ermitteln und bestimmen, ob sie metallisch oder halbleitend sind“, erklärt Thomas Hümmer.

Die Methode lässt sich auf eine Vielfalt von verschiedenartigen Proben anwenden. Dies macht sie zu einem vielversprechenden Werkzeug, das sogar einzelne Moleküle mit Raman-Spektroskopie abzubilden vermag. Das Schema könnte erweitert werden, um mit neuartigen Materialien Raman-Laser zu bauen, oder es könnte genutzt werden, um Quantenkontrolle über molekulare Vibrationsschwingungen zu erhalten. [DH/OM]

Originalveröffentlichung:

Thomas Hümmer, Jonathan Noe, Matthias Hofmann, Theodor W. Hänsch, Alexander Högele, David Hunger
Cavity-enhanced Raman microscopy of individual carbon nanotubes
Nature Communications, 12 July 2016, DOI: 10.1038/NCOMMS12155

Kontakt:

Dr. David Hunger
Max-Planck-Institut für Quantenoptik, und
Ludwig-Maximilians-Universität München
Schellingstr. 4 /III
80799 München
Telefon: +49 (0)89 / 21 80 - 3937
E-Mail: david.hunger@physik.lmu.de

Prof. Dr. Theodor W. Hänsch
Professor für Experimentalphysik
Ludwig-Maximilians-Universität München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -712
E-Mail: t.w.haensch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise