Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drahtlose Kommunikation zwischen Atomen

02.08.2013
Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben am Freie-Elektronen-Laser FLASH (DESY, Hamburg) erstmals direkt die Zeitdauer eines strahlungslosen Energietransfers zwischen Atomen eines Neon-Dimers gemessen.

Die effiziente Umverteilung von Energie in molekularen Systemen nach Einwirkung energiereicher Strahlung ist von grundlegender Bedeutung für viele chemische und biochemische Reaktionen. [Physical Review Letters, accepted]


Energieschema zum interatomaren Coulombzerfall (ICD) im Neon-Dimer nach 2s-Ionisation eines der beiden Atome (links). Die diskreten gebundenen Zustände mit der entsprechenden Besetzung an Elektronen (grüne Kreise) sind als horizontale Linien dargestellt. Darüber grün schattiert jeweils ab der Ionisationsgrenze der Bereich der kontinuierlichen Zustände freier Elektronen. Das 2s-Loch im Ne+-Ion (links) wird durch ein 2p-Elektron aufgefüllt. Durch elektrische Wechselwirkung (rot gestrichelte Linie) mit einem 2p-Elektron im benachbarten (Abstand R) neutralen Ne-Atom kann dieses ionisiert werden.
Grafik: MPI für Kernphysik

Für den Energietransfer in atomaren und molekularen Systemen spielen strahlungslose Prozesse nach Einwirkung energiereicher Strahlung eine große Rolle. Gerade für leichte Atome sind diese gegenüber der Emission von Licht (Fluoreszenz) oft wesentlich schneller und effizienter. Viele chemische oder gar biochemische Reaktionen werden durch Umverteilung von Energie bestimmt, die – an einer Stelle absorbiert – an einer anderen Stelle zu interner Bewegung oder gar dem Aufbruch einer chemischen Bindung führen kann. Vielfach wird hier die Energie durch die Bewegung von Elektronen transportiert, aber auch die elektrische Kraft zwischen Elektronen allein reicht für einen effizienten Energietransfer aus – selbst über (auf atomarem Maßstab) größere Distanzen.

Ein Beispiel für einen sehr effizienten Energietransfer zwischen schwach gebundenen Atomen ist der so genannte interatomare Coulombzerfall (ICD). Er wurde Ende der 1990er Jahre von Lorenz Cederbaum, Professor für Physikalische Chemie an der Universität Heidelberg, vorhergesagt.

Die Abbildung veranschaulicht diesen Prozess am Beispiel eines Neon-Dimers (Ne2), bestehend aus zwei sehr schwach aneinander gebundenen Neon-Atomen. Zunächst wird durch Einwirkung energiereicher Strahlung (z. B. Absorption von UV-Licht) ein inneres Elektron (Zustand 2s) von einem der beiden Neon-Atome entfernt. Das zurückbleibende ‚Loch‘ kann dann durch eines der äußeren 2p-Elektronen aufgefüllt werden.

Da diese Energie nicht ausreicht, um ein weiteres 2p-Elektron herauszuwerfen (atomarer Auger-Effekt), kann sich ein einzelnes Neon-Ion nur durch Emission von Licht stabilisieren, was verhältnismäßig langsam (innerhalb von einigen Nanosekunden) geschieht. Befindet sich aber nun – wie in dem Dimer – in der Nähe (Abstand R) ein weiteres neutrales Neon-Atom, so kann dieses die Energie strahlungslos aufnehmen, was dort zur Freisetzung eines 2p-Elektrons ausreicht. Der Energieübertrag wird durch die elektrische (Coulomb-)Wechselwirkung der beiden aktiven Elektronen vermittelt.

Es ist aus verschiedenen Untersuchungen bekannt, dass der ICD recht effizient und rasch abläuft. Wie schnell dies aber vor sich geht, konnte bisher nicht direkt experimentell bestimmt werden. Der Gruppe um Robert Moshammer vom Heidelberger Max-Planck-Institut für Kernphysik (MPIK) ist diese Messung nun erstmals gelungen. Dazu haben die Forscher am Freie-Elektronen-Laser in Hamburg (FLASH) Neon-Dimere mit extremer UV-Strahlung bestrahlt, wobei sie jeweils Paare von Lichtblitzen mit einstellbarer Verzögerung verwendeten.

„Mit dem ersten Blitz erzeugen wir ein 2s-Loch in einem der beiden Atome und fragen dann mit dem zweiten Blitz ab, ob das andere Atom bereits durch ICD ebenfalls ionisiert wurde“, erläutert Kirsten Schnorr, Doktorandin am MPIK. Dabei ergab sich, dass der ‚drahtlose‘ ICD-Energietransfer typischerweise 150 Femtosekunden (10–15 s) dauert. Dies ist sehr schnell im Vergleich zur o. g. Fluoreszenz, aber immer noch ca. 100.000 mal langsamer als die Zeit, die ein Lichtstrahl für die Distanz (R) von einigen Atomdurchmessern zum Nachbaratom benötigt. Daraus folgt, dass die Geschwindigkeit des ICD durch die Zeit bestimmt wird, in welcher sich das 2s-Loch auffüllt. Wie bei allen Quantenprozessen dieser Art geschieht dies zufällig innerhalb einer bestimmten Lebensdauer (Halbwertszeit).

Der Energietransfer über ICD ist immer dann von Bedeutung, wenn ein angeregtes Atom Energie an seine unmittelbare Umgebung strahlungslos abgeben kann. So wurde dies u. a. auch in Anordnungen von Wassermolekülen gefunden, die über Wasserstoffbrücken ebenfalls nur schwach untereinander gebunden sind. Die Ionisierung der Umgebung durch ICD ist auch für biologische Systeme relevant bis hin zu medizinischen Fragestellungen (Strahlenschutz und -therapie).

Die experimentellen Daten stimmen gut mit theoretischen Vorhersagen überein. Allerdings nur, wenn bei den Rechnungen die Bewegung der Ne-Atome zwischen der Anregung und dem ICD-Zerfall berücksichtigt wird. Diese Abhängigkeit soll in weiteren Experimenten näher untersucht werden.

Originalveröffentlichung:
Time-Resolved Measurement of Interatomic Coulombic Decay in Ne2
Kirsten Schnorr et al.; Physical Review Letters, accepted (2013).
Artikel auf arXiv - siehe unten.
Kontakt:
Kirsten Schnorr
Tel.: 06221/516-438
E-Mail: kirsten.schnorr@mpi-hd.mpg.de
Dr. Arne Senftleben
Tel.: 06221/516-523
E-Mail: arne.senftleben@mpi-hd.mpg.de
Dr. Robert Moshammer
Tel.: 06221/516-461
E-Mail: robert.moshammer@mpi-hd.mpg.de
Weitere Informationen:
http://arxiv.org/abs/1308.0118
Artikel auf arXiv
http://www.mpi-hd.mpg.de/ullrich/page.php?id=124
Atome und Moleküle in ultrakurzen Laserpulsen (Arbeitsgruppe Moshammer)
http://flash.desy.de/
Freier-Elektronen-Laser FLASH am DESY
http://www.ipp.mpg.de/ippcms/de/for/bereiche/ag_elektronen/aktuell/
ICD zwischen Wassermolekülen (MPI für Plasmaphysik)

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie