Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die spinnen, die Elektronen!

15.02.2017

Grenzfläche zwischen Isolatoren ermöglicht Informationstransport per Spin.

Heutige Computertechnologie basiert auf dem Transport elektrischer Ladung in Halbleitern. Doch schon in naher Zukunft wird das Potential dieser Technologie ausgeschöpft sein, da die verwendeten Bauteile nicht weiter miniaturisiert werden können.


Diese Grenzschicht erlaubt den Transport von Information über den Dreh-impuls von Elektronen – Bild: Christoph Hohmann / NIM

Doch es gibt noch eine weitere Möglichkeit: Statt der Ladung der Elektronen könnte ihre Drehrichtung, ihr Spin, für den Informationstransport genutzt werden. Wie das geht, zeigt nun ein Wissenschaftlerteam aus München und Kyoto.

Computer und Mobilgeräte stellen Jahr für Jahr einen größeren Funktionsumfang bereit.
Basis für diese Leistungssteigerungen ist eine immer weitergehende Miniaturisierung.
Dieser ist jedoch eine fundamentale Grenze gesetzt, so dass eine beliebige weitere Steigerung mit konventioneller Halbleitertechnologie nicht zu erwarten ist.

Forschende in aller Welt arbeiten deshalb an Alternativen. Als besonders vielversprechend erweist sich die sogenannte Spin-Elektronik. Sie macht sich zunutze, dass Elektronen neben der Ladung auch einen Drehimpuls besitzen, den Spin. Diese Eigenschaft möchten die Fachleute nutzen, um die Informationsdichte und damit den Funktionsumfang zukünftiger Elektronik weiter zu erhöhen.

Wissenschaftler des Walther-Meißner-Institutes der Bayerischen Akademie der Wissenschaften (WMI) und der Technischen Universität München (TUM) in Garching konnten jetzt zusammen mit Kollegen von der Kyoto Universität in Japan den Transport von Spin-Information bei Raumtemperatur in einem außergewöhnlichen Materialsystem
nachweisen.

Eine besondere Grenzfläche

In ihren Experimenten wiesen sie die Erzeugung, den Transport und die Detektion von elektronischen Spins in der Grenzfläche zwischen den Materialien Lanthan-Aluminat (LaAlO2) und Strontium-Titanat (SrTiO3) nach. Die Besonderheit dieses Materialsystems: An der Grenzfläche zwischen den beiden nichtleitenden Materialien bildet sich eine extrem dünne, elektrisch leitfähige Schicht aus, ein sogenanntes zweidimensionales Elektronengas.

Das deutsch-japanische Team konnte nun zeigen, dass dieses zweidimensionale Elektronengas nicht nur Ladung, sondern auch Spin transportieren kann. „Dazu mussten wir zunächst einige technische Hürden überwinden“, sagt Dr. Hans Hübl, stellvertretender Direktor des Walther-Meißner-Instituts. „Die beiden wichtigsten Fragestellungen dabei lauteten: Wie lässt sich der Spin in das zweidimensionale Elektronengas übertragen und wie lässt sich sein Transport nachweisen?“

Informationstransport durch den Spin

Das Problem der Spin-Übertragung lösten die Wissenschaftler durch einen magnetischen Kontakt, dessen Elektronen durch Mikrowellenstrahlung zu einer Präzessionsbewegung gezwungen werden, analog zur Taumelbewegung eines Kreisels. Genau wie beim Kreisel hält diese Bewegung nicht ewig an, sondern schwächt sich ab – in diesem Fall durch Abgabe von Drehmoment an das zweidimensionale Elektronengas. Dieses ist nun in der Lage, die Spin-Information zu einem nichtmagnetischen Kontakt zu transportieren, der sich einen Mikrometer neben dem magnetischen Kontakt befindet.

Der nichtmagnetische Kontakt detektiert den Spin-Transport indem er die Spins absor-biert und dabei eine elektrische Spannung aufbaut. Durch Messung dieser Spannung konnten die Forscher den Spin-Transport systematisch untersuchen und nachweisen, dass er in derartigen Strukturen über Entfernungen bis zum hundertfachen Abstand heu-tiger Transistoren möglich ist.

Basierend auf diesen Ergebnissen will das Wissenschaftler-Team nun erforschen, inwie-weit sich mit diesem Materialsystem spinelektronische Bauelemente mit neuartigen Funktionalitäten realisieren lassen.

Das Forschungsprojekt wurde durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM) finanziell gefördert.

Publikation:
Strong evidence for d-electron spin transport at room temperature at a LaAlO3/SrTiO3 interface. R. Ohshima, Y. Ando, K. Matsuzaki, T. Susaki, M. Weiler, S. Klingler, H. Huebl, E. Shikoh, T. Shinjo, S.T.B Goennenwein and M. Shiraishi. Nature Materials, Advanced Online Publication 13. Februar 2017. DOI:10.1038/nmat4857

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4857.html
Pressebild: Diese Grenzschicht erlaubt den Transport von Information über den Dreh-impuls von Elektronen – Bild: Christoph Hohmann / NIM

Kontakt:
Dr. Hans Gregor Hübl,
Gruppenleiter Magnetismus und Spintronics
Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften und
Lehrstuhl für Technische Physik (E23) der Technischen Universität München
Walther-Meißner-Straße 8, 85748 Garching, Germany
Tel.: +49 89 289 14204 – E-Mail: hans.huebl@tum.de –Web: http://www.wmi.badw.de

Weitere Informationen:

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4857.html
http://www.wmi.badw.de

Dr. Isabel Leicht | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften