Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quanten-Grinsekatze

30.07.2014

Können sich Neutronen an einem anderen Ort befinden als ihr eigener Spin? Ein Quantenexperiment, durchgeführt von einem Team der TU Wien, zeigt ein neues Quanten-Paradox auf.

Die Grinsekatze im Roman „Alice im Wunderland“ von Lewis Caroll hat ganz besondere Fähigkeiten: Sie selbst verschwindet, ihr Grinsen bleibt aber zurück. Lässt sich ein Objekt von seinen Eigenschaften trennen? In einem Quantenexperiment ist das nun gelungen: Neutronen wurden dazu gebracht, sich entlang eines anderen Wegs zu bewegen als eine ihrer Eigenschaften – ihr magnetisches Moment. Diese „Quanten-Grinsekatze“ könnte dazu dienen, Hochpräzisions-Messungen unempfindlicher gegen Störungen zu machen.


In einem Interferometer, das einen Strahl in einen oberen und einen unteren Weg aufteilt, wird ein Objekt von seiner Eigenschaft getrennt. TU Wien. Zeichnung: Leon Filter


Tobias Denkmayr, beim Experiment in Grenoble. TU Wien

Gleichzeitig hier und dort

Nach den Gesetzen der Quantenphysik können sich Teilchen in einer Überlagerung unterschiedlicher Zustände befinden. So kann man beispielsweise einen Strahl von Neutronen mit Hilfe eines Silizium-Kristalls auf zwei unterschiedliche Strahlen aufteilen und zeigen, dass sich die einzelnen Neutronen nicht für einen der beiden möglichen Wege entscheiden müssen, sondern in einer Quanten-Überlagerung beide Strecken gleichzeitig durchlaufen.

„Diese experimentelle Technik bezeichnet man als Neutroneninterferometrie“, sagt Prof. Yuji Hasegawa von der TU Wien. „Sie wurde hier am Atominstitut in den 1970er Jahren entwickelt und hat sich als perfektes Werkzeug zur Untersuchung der Grundlagen der Quantenmechanik erwiesen.“

Yuji Hasegawa versammelte ein großes Team - mit Tobias Denkmayr, Hermann Geppert und Stephan Sponar (TU Wien), Alexandre Matzkin vom französischen Forschungsinstitut CNRS und Prof. Jeff Tollaksen von der Chapman University in Kalifornien. Gemeinsam gelang es, eine „Quanten-Grinsekatze“ zu fangen: Das System verhält sich, als wären die Neutronen räumlich von ihrem magnetischen Moment getrennt.

Das Experiment selbst wurde an der Neutronenquelle des Institut Laue-Langevin in Grenoble durchgeführt, wo das Atominstitut eine weltweit einzigartige Messstation für Neutroneninterferometrie betreibt. In Grenoble wurde das Team zusätzlich von Hartmut Lemmel unterstützt.

Wo ist die Katze...?

Neutronen besitzen zwar keine elektrische Ladung, tragen aber ein magnetisches Moment. Sie besitzen damit eine magnetische Richtung (den Spin), die durch äußere Magnetfelder beeinflusst werden kann.

In einem Interferometer wird zunächst ein Neutronenstrahl in zwei Teile aufgespalten, dann sorgt man dafür, dass die Spins beider Teilstrahlen unterschiedliche Richtungen einnehmen: Der obere Neutronenstrahl hat einen Spin parallel zur Flugrichtung des Neutrons, die Spinrichtung des unteren Strahls ist antiparallel zur Flugrichtung. Nachdem die beiden Strahlen wieder zusammengeführt worden sind, wählt man gezielt jene Neutronen aus, deren Spin in Flugrichtung zeigt – die anderen werden einfach ignoriert. „Das bezeichnet man als Postselection“, erklärt Hermann Geppert. „Im Strahl gibt es Neutronen unterschiedlicher Spin-Richtungen, wir analysieren aber nur um einen Teil davon.“

Diese Neutronen, die im Zustand „Spin in Flugrichtung“ vorgefunden werden, müssen sich entlang des oberen Pfades bewegt haben, denn nur dort befinden sich die Neutronen in diesem Zustand. Dies lässt sich auch experimentell beweisen: Baut man im unteren Pfad einen Filter ein, der einen geringen Anteil der Neutronen verschluckt, dann bleibt die Anzahl der am Ende gemessenen „Spin in Flugrichtung-Neutronen“ gleich. Baut man den Filter oben ein, sinkt die Zahl dieser Neutronen.

… und wo ist das Grinsen?

Komplizierter wird es allerdings, wenn man zusätzlich auch untersucht, wo der Spin der Neutronen zu finden ist: Durch ein Magnetfeld wird der Spin der Neutronen leicht verändert. Wenn man die beiden Strahlen auf geeignete Weise überlagert, können sie sich dann gegenseitig verstärken oder abschwächen. Genau das lässt sich im Experiment beobachten, wenn man ein Magnetfeld am unteren Pfad anlegt, also dort, wo die Neutronen, die für das Experiment entscheidend sind, sich eigentlich gar nicht aufhalten. Ein Magnetfeld am oberen Pfad hingegen hat keine Auswirkungen.

„Eben dadurch, dass wir die Neutronen anfangs in einem speziellen Zustand präparieren und am Ende ganz bestimmte Neutronen postselektieren, erreichen wir, dass die möglichen Wege im Interferometer beide eine Bedeutung für das Experiment haben – allerdings auf ganz unterschiedliche Weise“, sagt Tobias Denkmayr. „Entlang des einen Weges koppeln die Teilchen selbst an unseren Messapparat, aber nur der andere Weg ist empfindlich gegenüber einer Kopplung des Spins. Das System verhält sich also so, als wären Teilchen räumlich von ihren Eigenschaften getrennt.“

Chance für Hochpräzisions-Messungen

Interessant ist das für Hochpräzisionsmessungen, die heute sehr oft auf dem Prinzip der Quantenüberlagerung beruhen. „Wenn ein Quantensystem eine Eigenschaft hat, die man messen will, und eine andere, die das System anfällig gegen Störungen macht, kann man mit einer Quanten-Grinsekatze beides trennen und so möglicherweise die Beeinträchtigung des Experiments durch die Störung minimieren“, hofft Stephan Sponar.

Die Idee der Quanten-Grinsekatze hatten zunächst von Jeff Tollaksen und Ykir Aharonov (Chepman University) entwickelt. Ein Vorschlag für ein Experiment war im Vorjahr publiziert worden, die nun vorgestellten Messungen sind der erste experimentelle Nachweis dieses Phänomens. Veröffentlicht wurden die Ergebnisse im Fachjournal „Nature Communications“.

Rückfragehinweis:
Prof. Yuji Hasegawa
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/grinsekatze/ Bilderdownload
http://www.nature.com/ncomms/2014/140729/ncomms5492/full/ncomms5492.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie