Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quanten-Grinsekatze

30.07.2014

Können sich Neutronen an einem anderen Ort befinden als ihr eigener Spin? Ein Quantenexperiment, durchgeführt von einem Team der TU Wien, zeigt ein neues Quanten-Paradox auf.

Die Grinsekatze im Roman „Alice im Wunderland“ von Lewis Caroll hat ganz besondere Fähigkeiten: Sie selbst verschwindet, ihr Grinsen bleibt aber zurück. Lässt sich ein Objekt von seinen Eigenschaften trennen? In einem Quantenexperiment ist das nun gelungen: Neutronen wurden dazu gebracht, sich entlang eines anderen Wegs zu bewegen als eine ihrer Eigenschaften – ihr magnetisches Moment. Diese „Quanten-Grinsekatze“ könnte dazu dienen, Hochpräzisions-Messungen unempfindlicher gegen Störungen zu machen.


In einem Interferometer, das einen Strahl in einen oberen und einen unteren Weg aufteilt, wird ein Objekt von seiner Eigenschaft getrennt. TU Wien. Zeichnung: Leon Filter


Tobias Denkmayr, beim Experiment in Grenoble. TU Wien

Gleichzeitig hier und dort

Nach den Gesetzen der Quantenphysik können sich Teilchen in einer Überlagerung unterschiedlicher Zustände befinden. So kann man beispielsweise einen Strahl von Neutronen mit Hilfe eines Silizium-Kristalls auf zwei unterschiedliche Strahlen aufteilen und zeigen, dass sich die einzelnen Neutronen nicht für einen der beiden möglichen Wege entscheiden müssen, sondern in einer Quanten-Überlagerung beide Strecken gleichzeitig durchlaufen.

„Diese experimentelle Technik bezeichnet man als Neutroneninterferometrie“, sagt Prof. Yuji Hasegawa von der TU Wien. „Sie wurde hier am Atominstitut in den 1970er Jahren entwickelt und hat sich als perfektes Werkzeug zur Untersuchung der Grundlagen der Quantenmechanik erwiesen.“

Yuji Hasegawa versammelte ein großes Team - mit Tobias Denkmayr, Hermann Geppert und Stephan Sponar (TU Wien), Alexandre Matzkin vom französischen Forschungsinstitut CNRS und Prof. Jeff Tollaksen von der Chapman University in Kalifornien. Gemeinsam gelang es, eine „Quanten-Grinsekatze“ zu fangen: Das System verhält sich, als wären die Neutronen räumlich von ihrem magnetischen Moment getrennt.

Das Experiment selbst wurde an der Neutronenquelle des Institut Laue-Langevin in Grenoble durchgeführt, wo das Atominstitut eine weltweit einzigartige Messstation für Neutroneninterferometrie betreibt. In Grenoble wurde das Team zusätzlich von Hartmut Lemmel unterstützt.

Wo ist die Katze...?

Neutronen besitzen zwar keine elektrische Ladung, tragen aber ein magnetisches Moment. Sie besitzen damit eine magnetische Richtung (den Spin), die durch äußere Magnetfelder beeinflusst werden kann.

In einem Interferometer wird zunächst ein Neutronenstrahl in zwei Teile aufgespalten, dann sorgt man dafür, dass die Spins beider Teilstrahlen unterschiedliche Richtungen einnehmen: Der obere Neutronenstrahl hat einen Spin parallel zur Flugrichtung des Neutrons, die Spinrichtung des unteren Strahls ist antiparallel zur Flugrichtung. Nachdem die beiden Strahlen wieder zusammengeführt worden sind, wählt man gezielt jene Neutronen aus, deren Spin in Flugrichtung zeigt – die anderen werden einfach ignoriert. „Das bezeichnet man als Postselection“, erklärt Hermann Geppert. „Im Strahl gibt es Neutronen unterschiedlicher Spin-Richtungen, wir analysieren aber nur um einen Teil davon.“

Diese Neutronen, die im Zustand „Spin in Flugrichtung“ vorgefunden werden, müssen sich entlang des oberen Pfades bewegt haben, denn nur dort befinden sich die Neutronen in diesem Zustand. Dies lässt sich auch experimentell beweisen: Baut man im unteren Pfad einen Filter ein, der einen geringen Anteil der Neutronen verschluckt, dann bleibt die Anzahl der am Ende gemessenen „Spin in Flugrichtung-Neutronen“ gleich. Baut man den Filter oben ein, sinkt die Zahl dieser Neutronen.

… und wo ist das Grinsen?

Komplizierter wird es allerdings, wenn man zusätzlich auch untersucht, wo der Spin der Neutronen zu finden ist: Durch ein Magnetfeld wird der Spin der Neutronen leicht verändert. Wenn man die beiden Strahlen auf geeignete Weise überlagert, können sie sich dann gegenseitig verstärken oder abschwächen. Genau das lässt sich im Experiment beobachten, wenn man ein Magnetfeld am unteren Pfad anlegt, also dort, wo die Neutronen, die für das Experiment entscheidend sind, sich eigentlich gar nicht aufhalten. Ein Magnetfeld am oberen Pfad hingegen hat keine Auswirkungen.

„Eben dadurch, dass wir die Neutronen anfangs in einem speziellen Zustand präparieren und am Ende ganz bestimmte Neutronen postselektieren, erreichen wir, dass die möglichen Wege im Interferometer beide eine Bedeutung für das Experiment haben – allerdings auf ganz unterschiedliche Weise“, sagt Tobias Denkmayr. „Entlang des einen Weges koppeln die Teilchen selbst an unseren Messapparat, aber nur der andere Weg ist empfindlich gegenüber einer Kopplung des Spins. Das System verhält sich also so, als wären Teilchen räumlich von ihren Eigenschaften getrennt.“

Chance für Hochpräzisions-Messungen

Interessant ist das für Hochpräzisionsmessungen, die heute sehr oft auf dem Prinzip der Quantenüberlagerung beruhen. „Wenn ein Quantensystem eine Eigenschaft hat, die man messen will, und eine andere, die das System anfällig gegen Störungen macht, kann man mit einer Quanten-Grinsekatze beides trennen und so möglicherweise die Beeinträchtigung des Experiments durch die Störung minimieren“, hofft Stephan Sponar.

Die Idee der Quanten-Grinsekatze hatten zunächst von Jeff Tollaksen und Ykir Aharonov (Chepman University) entwickelt. Ein Vorschlag für ein Experiment war im Vorjahr publiziert worden, die nun vorgestellten Messungen sind der erste experimentelle Nachweis dieses Phänomens. Veröffentlicht wurden die Ergebnisse im Fachjournal „Nature Communications“.

Rückfragehinweis:
Prof. Yuji Hasegawa
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/grinsekatze/ Bilderdownload
http://www.nature.com/ncomms/2014/140729/ncomms5492/full/ncomms5492.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie