Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Quanten-Grinsekatze

30.07.2014

Können sich Neutronen an einem anderen Ort befinden als ihr eigener Spin? Ein Quantenexperiment, durchgeführt von einem Team der TU Wien, zeigt ein neues Quanten-Paradox auf.

Die Grinsekatze im Roman „Alice im Wunderland“ von Lewis Caroll hat ganz besondere Fähigkeiten: Sie selbst verschwindet, ihr Grinsen bleibt aber zurück. Lässt sich ein Objekt von seinen Eigenschaften trennen? In einem Quantenexperiment ist das nun gelungen: Neutronen wurden dazu gebracht, sich entlang eines anderen Wegs zu bewegen als eine ihrer Eigenschaften – ihr magnetisches Moment. Diese „Quanten-Grinsekatze“ könnte dazu dienen, Hochpräzisions-Messungen unempfindlicher gegen Störungen zu machen.


In einem Interferometer, das einen Strahl in einen oberen und einen unteren Weg aufteilt, wird ein Objekt von seiner Eigenschaft getrennt. TU Wien. Zeichnung: Leon Filter


Tobias Denkmayr, beim Experiment in Grenoble. TU Wien

Gleichzeitig hier und dort

Nach den Gesetzen der Quantenphysik können sich Teilchen in einer Überlagerung unterschiedlicher Zustände befinden. So kann man beispielsweise einen Strahl von Neutronen mit Hilfe eines Silizium-Kristalls auf zwei unterschiedliche Strahlen aufteilen und zeigen, dass sich die einzelnen Neutronen nicht für einen der beiden möglichen Wege entscheiden müssen, sondern in einer Quanten-Überlagerung beide Strecken gleichzeitig durchlaufen.

„Diese experimentelle Technik bezeichnet man als Neutroneninterferometrie“, sagt Prof. Yuji Hasegawa von der TU Wien. „Sie wurde hier am Atominstitut in den 1970er Jahren entwickelt und hat sich als perfektes Werkzeug zur Untersuchung der Grundlagen der Quantenmechanik erwiesen.“

Yuji Hasegawa versammelte ein großes Team - mit Tobias Denkmayr, Hermann Geppert und Stephan Sponar (TU Wien), Alexandre Matzkin vom französischen Forschungsinstitut CNRS und Prof. Jeff Tollaksen von der Chapman University in Kalifornien. Gemeinsam gelang es, eine „Quanten-Grinsekatze“ zu fangen: Das System verhält sich, als wären die Neutronen räumlich von ihrem magnetischen Moment getrennt.

Das Experiment selbst wurde an der Neutronenquelle des Institut Laue-Langevin in Grenoble durchgeführt, wo das Atominstitut eine weltweit einzigartige Messstation für Neutroneninterferometrie betreibt. In Grenoble wurde das Team zusätzlich von Hartmut Lemmel unterstützt.

Wo ist die Katze...?

Neutronen besitzen zwar keine elektrische Ladung, tragen aber ein magnetisches Moment. Sie besitzen damit eine magnetische Richtung (den Spin), die durch äußere Magnetfelder beeinflusst werden kann.

In einem Interferometer wird zunächst ein Neutronenstrahl in zwei Teile aufgespalten, dann sorgt man dafür, dass die Spins beider Teilstrahlen unterschiedliche Richtungen einnehmen: Der obere Neutronenstrahl hat einen Spin parallel zur Flugrichtung des Neutrons, die Spinrichtung des unteren Strahls ist antiparallel zur Flugrichtung. Nachdem die beiden Strahlen wieder zusammengeführt worden sind, wählt man gezielt jene Neutronen aus, deren Spin in Flugrichtung zeigt – die anderen werden einfach ignoriert. „Das bezeichnet man als Postselection“, erklärt Hermann Geppert. „Im Strahl gibt es Neutronen unterschiedlicher Spin-Richtungen, wir analysieren aber nur um einen Teil davon.“

Diese Neutronen, die im Zustand „Spin in Flugrichtung“ vorgefunden werden, müssen sich entlang des oberen Pfades bewegt haben, denn nur dort befinden sich die Neutronen in diesem Zustand. Dies lässt sich auch experimentell beweisen: Baut man im unteren Pfad einen Filter ein, der einen geringen Anteil der Neutronen verschluckt, dann bleibt die Anzahl der am Ende gemessenen „Spin in Flugrichtung-Neutronen“ gleich. Baut man den Filter oben ein, sinkt die Zahl dieser Neutronen.

… und wo ist das Grinsen?

Komplizierter wird es allerdings, wenn man zusätzlich auch untersucht, wo der Spin der Neutronen zu finden ist: Durch ein Magnetfeld wird der Spin der Neutronen leicht verändert. Wenn man die beiden Strahlen auf geeignete Weise überlagert, können sie sich dann gegenseitig verstärken oder abschwächen. Genau das lässt sich im Experiment beobachten, wenn man ein Magnetfeld am unteren Pfad anlegt, also dort, wo die Neutronen, die für das Experiment entscheidend sind, sich eigentlich gar nicht aufhalten. Ein Magnetfeld am oberen Pfad hingegen hat keine Auswirkungen.

„Eben dadurch, dass wir die Neutronen anfangs in einem speziellen Zustand präparieren und am Ende ganz bestimmte Neutronen postselektieren, erreichen wir, dass die möglichen Wege im Interferometer beide eine Bedeutung für das Experiment haben – allerdings auf ganz unterschiedliche Weise“, sagt Tobias Denkmayr. „Entlang des einen Weges koppeln die Teilchen selbst an unseren Messapparat, aber nur der andere Weg ist empfindlich gegenüber einer Kopplung des Spins. Das System verhält sich also so, als wären Teilchen räumlich von ihren Eigenschaften getrennt.“

Chance für Hochpräzisions-Messungen

Interessant ist das für Hochpräzisionsmessungen, die heute sehr oft auf dem Prinzip der Quantenüberlagerung beruhen. „Wenn ein Quantensystem eine Eigenschaft hat, die man messen will, und eine andere, die das System anfällig gegen Störungen macht, kann man mit einer Quanten-Grinsekatze beides trennen und so möglicherweise die Beeinträchtigung des Experiments durch die Störung minimieren“, hofft Stephan Sponar.

Die Idee der Quanten-Grinsekatze hatten zunächst von Jeff Tollaksen und Ykir Aharonov (Chepman University) entwickelt. Ein Vorschlag für ein Experiment war im Vorjahr publiziert worden, die nun vorgestellten Messungen sind der erste experimentelle Nachweis dieses Phänomens. Veröffentlicht wurden die Ergebnisse im Fachjournal „Nature Communications“.

Rückfragehinweis:
Prof. Yuji Hasegawa
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141490
hasegawa@ati.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/grinsekatze/ Bilderdownload
http://www.nature.com/ncomms/2014/140729/ncomms5492/full/ncomms5492.html Originalpublikation

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten