Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Grenzen des Fliegens ausloten

28.11.2014

DFG-Forschergruppe stellt Ergebnisse auf internationalem Abschlusssymposium vor

Der Luftstrom ist die wichtigste Grundlage und zugleich die größte Gefahr des Fliegens: Reißt die Strömung an den Tragflügeln oder an den Triebwerken ab, kommt es zum so genannten Überziehen und damit zum Verlust des Auftriebes. Im schlimmsten Fall kann auch ein Flugzeugabsturz die Folge sein.

Diesen flugphysikalischen Grenzbereich auszuloten zählt zu den größten Herausforderungen der Luftfahrtforschung. Jedoch ist die praktische Erprobung im Flug mit hohen Risiken und Kostenverbunden; eine theoretische Berechnung der komplexen Vorgänge war bisher nahezu unmöglich.

Nun ist es einer an der TU Braunschweig angesiedelten Forschergruppe gelungen, diesen Grenzbereich erstmals mithilfe von Simulationen zu betreten. Ihre Ergebnisse legen die Grundlage für eine effizientere Entwicklung künftiger Verkehrsflugzeuge und einen sicheren und geräuschärmeren Einsatz.

Das Risiko des „Langsamflugs“

Das Risiko des Überziehens ist so alt wie das Fliegen selbst: bereits Otto Lilienthal wurde ein gefährlicher Strömungsabriss zum Verhängnis. Eine Böe soll dazu geführt haben, dass der Flugpionier mit seinem Gleitflieger verunglückte. Dahinter verbirgt sich ein komplexes flugphysikalisches Phänomen. Denn ein Flugzeug hält sich durch einen gleichmäßigen Verlauf der Strömung von der Vorderkante zur Hinterkante des Tragflügels in der Luft.

Reißt die Strömung ab, kommt es zu Verwirbelungen und Rückströmung, die zum Verlust des Auftriebes und damit schlimmstenfalls zum Absturz führen. Obwohl sich seit Lilienthals Zeiten einiges in der Luftfahrttechnik getan hat, ist die Erforschung dieses flugphysikalischen Grenzbereiches immer noch aktuell. Denn beim langsamen Flug, wie etwa beim Starten und Landen, darf es auch bei modernen Flugzeugen keinesfalls zum Überziehen an Tragflügeln und Triebwerken kommen.

Simulationen loten Grenzbereiche aus

Für Luftfahrtingenieure wie Prof. Rolf Radespiel, Leiter des Instituts für Strömungsmechanik der Technischen Universität Braunschweig, zählt die Erforschung eben dieser Grenzbereiche zu den größten Herausforderungen seiner Disziplin. „Für Wissenschaftler und Konstrukteure hat die Flugsicherheit die höchste Priorität. Sie muss im Rahmen des technischen Machbaren stets gewährleistet sein.

Können wir diesen Rahmen nun durch neue Erkenntnisse erweitern, haben wir auch mehr Raum, um noch effizientere Flugzeuge zu entwickeln“, erläutert Prof. Radespiel. Gemeinsam mit der Forschergruppe „Simulation des Überziehens von Tragflügeln und Triebwerksgondeln“ hat er sich in den vergangen sechs Jahren dieser Herausforderung gestellt.

So ist es mithilfe von Hochleistungsrechnern gelungen, Simulationen zu entwickeln, die es zum einen erlauben, die komplexen physikalischen Vorgänge beim Überziehen zu verstehen und zum anderen die Grundlage dafür zu legen, die bisherigen Grenzen des technisch Machbaren zu versetzen.

„Durch eine enge Zusammenarbeit der Meteorologen an der LU Hannover mit den Luftfahrtwissenschaftlern der TU und des DLR in Braunschweig konnten zum ersten Mal auch realistische Modelle der bewegten Atmosphäre in die Simulationen einbezogen werden“, erklärt der Sprecher der Forschergruppe.

Effiziente Entwicklung und Einsatz neuer Flugzeuge

Die neuen Erkenntnisse und Simulationen versetzten nicht nur die Grenzen auf wissenschaftlichem Gebiet. „Eine genaue Kenntnis dieser Bedingungen vergrößert zum einen die Flugsicherheit und schafft zum anderen Raum für neue Ansätze in Fragen des Lärm- und Umweltschutzes“, erläutert Prof. Radespiel. So bieten die Ergebnisse neben dem grundlegenden Einblick in ein bisher weitestgehend unbekanntes Terrain auch einen Ausblick auf künftige Möglichkeiten in der Forschung und Entwicklung.

„Mit unseren Simulationen kann bei der Entwicklung neuer Flugzeuge künftig Zeit und Kosten eingespart werden. Zudem sind sie eine Grundlage für die Nutzung potenziell leiserer Flugbahnen“, fasst Radespiel zusammen. Die Ergebnisse der Forschergruppe werden unter anderem dem am Niedersächsischen Forschungszentrum für Luftfahrt der TU Braunschweig angesiedelten Sonderforschungsbereiches 880 „Grundlagen des Hochauftriebs künftiger Verkehrsflugzeuge“ zugutekommen.

Zur Forschergruppe

Die Forschergruppe 1066 „Simulation des Überziehens von Tragflügeln und Triebwerksgondeln“ wird seit dem Jahr 2008 von der Deutschen Forschungsgemeinschaft gefördert und hat mit Abschluss der zweiten Förderperiode im Jahr 2015 ihre maximale Förderdauer erreicht. Im Rahmen der Forschergruppe arbeiten die TU Braunschweig und das Deutsche Zentrum für Luft- und Raumfahrt der Standorte Braunschweig und Göttingen mit den Universitäten aus Darmstadt, Hannover, München, Stuttgart und Tübingen eng zusammen. In den Transferprojekten sind auch die Unternehmen Rolls-Royce-Deutschland und Airbus mit finanziellen Mitteln beteiligt.

Das internationale Symposium findet am 01. Dezember 2014 von 9:00 bis 18:00 Uhr und am 02. Dezember 2014 von 8:00 bis 15:15 Uhr in den Räumen des Instituts für Strömungsmechanik der Technischen Universität Braunschweig statt. Interviews können nach Absprache ermöglicht werden.

Kontakt
Prof. Rolf Radespiel (Sprecher FOR 1066)
Institut für Strömungsmechanik
Hermann-Blenk-Straße 37
38108 Braunschweig
Tel.: 0531/391-94251
E-Mail: k.behrends@tu-braunschweig.de
for1066.tu-braunschweig.de


Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/?p=7694

Stephan Nachtigall | EurekAlert!

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie