Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Gammablasen der Milchstraße

04.02.2015

Neues Verfahren der Bildgebung lüftet so manches Geheimnis der galaktischen Anatomie

Die Anatomie der Milchstraße im Gammalicht erscheint besonders rätselhaft. So gibt es über und unter dem galaktischen Zentrum mysteriöse gigantische Blasen, die hochenergetische Strahlung aussenden. Ein neues Verfahren zur Bildgebung, entwickelt am Garchinger Max-Planck-Institut für Astrophysik, hat die Gammastrahlung in nur drei fundamentale Komponenten zerlegt:


Die Milchstraße im Gammalicht: In der linken Bildhälfte sind die grießeligen Rohdaten dargestellt, in der rechten die aufbereiteten. Dazu haben die Forscher einen statistischen Algorithmus entwickelt, mit dessen Hilfe sie das Rauschen sowie Instrumentenartefakte entfernen und schließlich diffuse und punktförmige Strukturen voneinander trennen. Die Aufnahmen enthüllen interessante Details wie die sogenannten Fermi-Blasen (Bildmitte), die sich über 50.000 Lichtjahre erstrecken und über deren Herkunft die Astronomen noch rätseln.

© MPA / Marco Selig

Strahlung von Punktquellen, Strahlung aus Reaktionen energetischer Protonen mit dichten, kalten Gaswolken sowie Strahlung von Elektronen, die mit Licht in dünnem, heißem Gas kollidieren. Die damit gewonnenen Einblicke helfen, einige Rätsel der Milchstraße zu lüften. So zeigt sich, dass die Gammablasen einfach nur Ausflüsse von gewöhnlichem, heißem Gas sind.

Das Firmament im Licht der Gammastrahlung zeigt viele Objekte, Strukturen und astrophysikalische Prozesse. Am prominentesten leuchtet die Milchstraße; sie macht einen großen Teil der Punktquellen sowie den überwiegenden Teil der diffusen Gammastrahlung des Himmels aus. Die verschiedenen Strahlungsquellen erscheinen jedoch überlagert, was deren Identifikation und Interpretation erschwert.

Außerdem messen Instrumente wie der Fermi-Satellit einzelne, zufällig eintreffende Gammaphotonen. Das sind Lichtteilchen höchster Energien, aus denen mit aufwendigen bildgebenden Verfahren Himmelskarten errechnet werden müssen. Forscher am Max-Planck-Institut für Astrophysik haben eine neue derartige Methode zum Entrauschen, Entfalten und Entwirren von Photonenbeobachtungen entwickelt. D³PO, so ihr Name, hat nun aus den Daten von Fermi die bisher brillanteste Gammastrahlungskarte des Himmels erzeugt

Dazu hat D³PO den Gammahimmel bei neun Photonenenergien in Punktquellen und diffuse Strahlung zerlegt. Daraus lässt sich ein farbiges Bild erzeugen; es zeigt, wie der Himmel mit Gammaaugen betrachtet aussehen würde. Darauf kann man die verschiedenen astrophysikalischen Prozesse erkennen, und zwar anhand ihrer verschiedenen Energiespektren, sichtbar als unterschiedliche Farben.

Die Gammablasen über und unter dem Zentrum der Milchstraße erscheinen blau-grünlich, was von besonders energiereicher Gammastrahlung kündet. Diese sollte hauptsächlich durch Zusammenstöße nahezu lichtschneller Elektronen mit Sternenlicht und anderen Photonen erzeugt worden sein. Die orange-braunen Regionen am rechten und linken Bildrand stammen vor allem von Kollisionen nahezu lichtschneller Protonen mit Atomkernen in dichten, kalten Gaswolken.

Die große Überraschung jedoch war, dass die zentrale, helle galaktische Scheibe – sowie eigentlich alle anderen Bereiche des Himmels – im Wesentlichen einfach nur eine Überlagerung dieser beiden Prozesse ist: Stöße von Protonen mit Atomkernen und von Elektronen mit Lichtteilchen. Zerlegt man die diffuse Gammastrahlung in nur diese beiden Prozesse, bleibt weniger als zehn Prozent der Strahlung übrig. Und dies an allen Orten des Himmels und bei allen untersuchten Energien.

Die gesamte diffuse galaktische Gammastrahlung wird also fast ausschließlich durch zwei typische Medien hervorgebracht: dichte, kalte Gaswolken und dünnes, heißes Gas zwischen diesen. In der Tat zeigt die aus den Wolken stammende Gammastrahlung die gleiche räumliche Himmelsverteilung wie die Staubwolken der Milchstraße, die der Satellit Planck im Mikrowellenbereich vermessen hat.

Die in den mysteriösen Gammablasen erzeugte Strahlung durch Elektronen unterscheidet sich in ihrer Farbe nicht von der Strahlung aus der galaktischen Scheibe. Dies legt nahe, dass wir an beiden Orten dasselbe Material sehen: heißes Gas, welches durch Sternexplosionen mit nahezu lichtschnellen Elektronen angereichert wurde. Die über 50.000 Lichtjahre reichenden Gammablasen sind daher nichts anderes als aufsteigende heiße Gasmassen, die den Zentralbereich unserer Milchstraße verlassen.

Neben der Enträtselung der Gammablasen hat die D³PO-Analyse der Anatomie galaktischer Gammastrahlung noch eine Reihe weiterer wissenschaftlicher Ergebnisse geliefert. So etwa erstrecken sich die kalten Gaswolken, die durch die Gammastrahlung kartografiert wurden, bis in größere Höhen über der galaktischen Ebene als die Staubwolken, die der Planck-Satellit vermessen hat. Das haben die Forscher zwar aufgrund der höheren Masse von Staubteilchen im Vergleich zu den Gasteilchen in den Gaswolken erwartet; es ist aber eine schöne Bestätigung dafür, dass diese anatomische Zerlegung der Milchstraße astrophysikalisch korrekt ist. Weiterhin haben die Wissenschaftler einen umfangreichen Katalog von Punktquellen vorgelegt und darin – leider erfolglos – nach Gammastrahlung von Galaxienhaufen gefahndet.

Der D³PO-Algorithmus, der all dies ermöglicht hat, ist mittlerweile frei verfügbar und wird in Zukunft auch astronomische Bilder bei anderen Wellenlängen liefern. Er wurde von Marco Selig im Rahmen seiner gerade mit Auszeichnung beendeten Promotion an der Ludwigs-Maximilians-Universität München mittels Informationsfeldtheorie hergeleitet und mittels der ebenfalls frei verfügbaren NIFTY-Software implementiert. Die Informationsfeldtheorie befasst sich mit der Mathematik der Bildgebung komplexer Daten und ist zentraler Schwerpunkt der Gruppe von Torsten Enßlin am Max-Planck-Institut für Astrophysik.


Ansprechpartner
Dr. Hannelore Hämmerle
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de
 
Dr. Torsten Enßlin
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2243
E-Mail: tensslin@mpa-garching.mpg.de

Dr. Marco Selig
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2298
E-Mail: mselig@mpa-garching.mpg.de


Originalpublikation
Marco Selig, Valentina Vacca, Niels Oppermann, Torsten A. Enßlin
The Denoised, Deconvolved, and Decomposed Fermi γ-ray Sky – An Application of the D3PO Algorithm
Astronomy & Astrophysics

Quelle

Dr. Hannelore Hämmerle | Max-Planck-Institut für Astrophysik, Garching
Weitere Informationen:
http://www.mpg.de/8931615/gammablasen-milchstrasse

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Nanoinjektion steigert Überlebensrate von Zellen
22.02.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

Luftfahrt der Zukunft

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

In Deutschland wächst die Zahl der Patienten mit Diabetes mellitus

23.02.2017 | Medizin Gesundheit

Viren unterstützen Fotosynthese bei Bakterien – Vorteil in der Evolution?

23.02.2017 | Biowissenschaften Chemie

Katalyse in der Maus

23.02.2017 | Biowissenschaften Chemie