Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Gammablasen der Milchstraße

04.02.2015

Neues Verfahren der Bildgebung lüftet so manches Geheimnis der galaktischen Anatomie

Die Anatomie der Milchstraße im Gammalicht erscheint besonders rätselhaft. So gibt es über und unter dem galaktischen Zentrum mysteriöse gigantische Blasen, die hochenergetische Strahlung aussenden. Ein neues Verfahren zur Bildgebung, entwickelt am Garchinger Max-Planck-Institut für Astrophysik, hat die Gammastrahlung in nur drei fundamentale Komponenten zerlegt:


Die Milchstraße im Gammalicht: In der linken Bildhälfte sind die grießeligen Rohdaten dargestellt, in der rechten die aufbereiteten. Dazu haben die Forscher einen statistischen Algorithmus entwickelt, mit dessen Hilfe sie das Rauschen sowie Instrumentenartefakte entfernen und schließlich diffuse und punktförmige Strukturen voneinander trennen. Die Aufnahmen enthüllen interessante Details wie die sogenannten Fermi-Blasen (Bildmitte), die sich über 50.000 Lichtjahre erstrecken und über deren Herkunft die Astronomen noch rätseln.

© MPA / Marco Selig

Strahlung von Punktquellen, Strahlung aus Reaktionen energetischer Protonen mit dichten, kalten Gaswolken sowie Strahlung von Elektronen, die mit Licht in dünnem, heißem Gas kollidieren. Die damit gewonnenen Einblicke helfen, einige Rätsel der Milchstraße zu lüften. So zeigt sich, dass die Gammablasen einfach nur Ausflüsse von gewöhnlichem, heißem Gas sind.

Das Firmament im Licht der Gammastrahlung zeigt viele Objekte, Strukturen und astrophysikalische Prozesse. Am prominentesten leuchtet die Milchstraße; sie macht einen großen Teil der Punktquellen sowie den überwiegenden Teil der diffusen Gammastrahlung des Himmels aus. Die verschiedenen Strahlungsquellen erscheinen jedoch überlagert, was deren Identifikation und Interpretation erschwert.

Außerdem messen Instrumente wie der Fermi-Satellit einzelne, zufällig eintreffende Gammaphotonen. Das sind Lichtteilchen höchster Energien, aus denen mit aufwendigen bildgebenden Verfahren Himmelskarten errechnet werden müssen. Forscher am Max-Planck-Institut für Astrophysik haben eine neue derartige Methode zum Entrauschen, Entfalten und Entwirren von Photonenbeobachtungen entwickelt. D³PO, so ihr Name, hat nun aus den Daten von Fermi die bisher brillanteste Gammastrahlungskarte des Himmels erzeugt

Dazu hat D³PO den Gammahimmel bei neun Photonenenergien in Punktquellen und diffuse Strahlung zerlegt. Daraus lässt sich ein farbiges Bild erzeugen; es zeigt, wie der Himmel mit Gammaaugen betrachtet aussehen würde. Darauf kann man die verschiedenen astrophysikalischen Prozesse erkennen, und zwar anhand ihrer verschiedenen Energiespektren, sichtbar als unterschiedliche Farben.

Die Gammablasen über und unter dem Zentrum der Milchstraße erscheinen blau-grünlich, was von besonders energiereicher Gammastrahlung kündet. Diese sollte hauptsächlich durch Zusammenstöße nahezu lichtschneller Elektronen mit Sternenlicht und anderen Photonen erzeugt worden sein. Die orange-braunen Regionen am rechten und linken Bildrand stammen vor allem von Kollisionen nahezu lichtschneller Protonen mit Atomkernen in dichten, kalten Gaswolken.

Die große Überraschung jedoch war, dass die zentrale, helle galaktische Scheibe – sowie eigentlich alle anderen Bereiche des Himmels – im Wesentlichen einfach nur eine Überlagerung dieser beiden Prozesse ist: Stöße von Protonen mit Atomkernen und von Elektronen mit Lichtteilchen. Zerlegt man die diffuse Gammastrahlung in nur diese beiden Prozesse, bleibt weniger als zehn Prozent der Strahlung übrig. Und dies an allen Orten des Himmels und bei allen untersuchten Energien.

Die gesamte diffuse galaktische Gammastrahlung wird also fast ausschließlich durch zwei typische Medien hervorgebracht: dichte, kalte Gaswolken und dünnes, heißes Gas zwischen diesen. In der Tat zeigt die aus den Wolken stammende Gammastrahlung die gleiche räumliche Himmelsverteilung wie die Staubwolken der Milchstraße, die der Satellit Planck im Mikrowellenbereich vermessen hat.

Die in den mysteriösen Gammablasen erzeugte Strahlung durch Elektronen unterscheidet sich in ihrer Farbe nicht von der Strahlung aus der galaktischen Scheibe. Dies legt nahe, dass wir an beiden Orten dasselbe Material sehen: heißes Gas, welches durch Sternexplosionen mit nahezu lichtschnellen Elektronen angereichert wurde. Die über 50.000 Lichtjahre reichenden Gammablasen sind daher nichts anderes als aufsteigende heiße Gasmassen, die den Zentralbereich unserer Milchstraße verlassen.

Neben der Enträtselung der Gammablasen hat die D³PO-Analyse der Anatomie galaktischer Gammastrahlung noch eine Reihe weiterer wissenschaftlicher Ergebnisse geliefert. So etwa erstrecken sich die kalten Gaswolken, die durch die Gammastrahlung kartografiert wurden, bis in größere Höhen über der galaktischen Ebene als die Staubwolken, die der Planck-Satellit vermessen hat. Das haben die Forscher zwar aufgrund der höheren Masse von Staubteilchen im Vergleich zu den Gasteilchen in den Gaswolken erwartet; es ist aber eine schöne Bestätigung dafür, dass diese anatomische Zerlegung der Milchstraße astrophysikalisch korrekt ist. Weiterhin haben die Wissenschaftler einen umfangreichen Katalog von Punktquellen vorgelegt und darin – leider erfolglos – nach Gammastrahlung von Galaxienhaufen gefahndet.

Der D³PO-Algorithmus, der all dies ermöglicht hat, ist mittlerweile frei verfügbar und wird in Zukunft auch astronomische Bilder bei anderen Wellenlängen liefern. Er wurde von Marco Selig im Rahmen seiner gerade mit Auszeichnung beendeten Promotion an der Ludwigs-Maximilians-Universität München mittels Informationsfeldtheorie hergeleitet und mittels der ebenfalls frei verfügbaren NIFTY-Software implementiert. Die Informationsfeldtheorie befasst sich mit der Mathematik der Bildgebung komplexer Daten und ist zentraler Schwerpunkt der Gruppe von Torsten Enßlin am Max-Planck-Institut für Astrophysik.


Ansprechpartner
Dr. Hannelore Hämmerle
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-3980
E-Mail: hhaemmerle@mpa-garching.mpg.de
 
Dr. Torsten Enßlin
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2243
E-Mail: tensslin@mpa-garching.mpg.de

Dr. Marco Selig
Max-Planck-Institut für Astrophysik, Garching
Telefon: +49 89 30000-2298
E-Mail: mselig@mpa-garching.mpg.de


Originalpublikation
Marco Selig, Valentina Vacca, Niels Oppermann, Torsten A. Enßlin
The Denoised, Deconvolved, and Decomposed Fermi γ-ray Sky – An Application of the D3PO Algorithm
Astronomy & Astrophysics

Quelle

Dr. Hannelore Hämmerle | Max-Planck-Institut für Astrophysik, Garching
Weitere Informationen:
http://www.mpg.de/8931615/gammablasen-milchstrasse

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt
21.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics