Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Quantenkühlschrank

01.02.2016

Die Quanten machen es möglich: An der TU Wien wurde untersucht, warum sich bestimmte Gase viel weiter abkühlen lassen, als man nach den klassischen Gesetzen der Physik erwarten würde.

Wenn man kalte Milch in heißen Kaffee gießt, stellt sich rasch ein Temperaturgleichgewicht ein. Es kommt zu Wechselwirkungen zwischen Milchtröpfchen und Kaffeepartikel und nach kurzer Zeit haben beide dieselbe durchschnittliche Energie.


Bernhard Rauer im Labor an der TU Wien

TU Wien

Diesen inneren Temperaturausgleich bezeichnet man als „Thermalisierung“. Sie spielt auch beim Abkühlen ultrakalter Gase eine wichtige Rolle. Erstaunlicherweise lassen sich aber auch Gase abkühlen, bei denen dieser Effekt eigentlich unterdrückt ist. An der TU Wien untersuchte man das genauer und stellte fest, dass es sich um eine spezielle, quantenphysikalische Form der Kühlung handelt.

Fort mit den heißen Teilchen!

„Die einzelnen Teilchen in einer Flüssigkeit oder in einem Gas haben unterschiedlich viel Energie“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. Wie diese Energien verteilt sind, hängt von der Temperatur ab. Je heißer das Gas, umso häufiger kommen Teilchen mit höheren Energien vor.

Daher kann man beim Abkühlen von sehr kalten Gasen einen einfachen Trick benutzen: Mit elektromagnetischen Feldern entfernt man immer wieder die Teilchen mit der höchsten Energie, die anderen mischen sich, und es stellt sich wieder eine typische Energieverteilung ein – diesmal aber bei etwas niedrigerer Temperatur.

„Das ist so ähnlich, wie beim Kaffee, wenn man sanft in die Tasse bläst, um ihn zu kühlen“, erklärt Bernhard Rauer, der die Experimente in der Forschungsgruppe von Jörg Schmiedmayer durchgeführt hat. „Die Teilchen mit der höchsten Energie schaffen es, die Flüssigkeit zu verlassen und werden weggeblasen. Im restlichen Kaffee stellt sich schnell wieder ein Gleichgewicht bei einer niedrigeren Temperatur ein.“

Newtonpendel und Teilchenstöße

Es gibt allerdings Fälle, in denen sich niemals eine thermische Temperaturverteilung einstellen kann. Beim sogenannten Newtonpendel hängt man mehrere Metallkugeln in einer geraden Linie auf, sodass sie einander berühren.

Wenn man die erste Kugel auslenkt und auf die anderen prallen lässt, wird die letzte Kugel auf der anderen Seite der Kugelreihe weggestoßen, die übrigen Kugeln bewegen sich nicht. „In diesem Fall können die Kugeln also bloß Energien tauschen, es stellt sich keine thermische Verteilung verschiedener Energien ein“, erklärt Bernhard Rauer.

Bernhard Rauer untersuchte an der TU Wien ein ganz ähnliches System: Ein eindimensionales Gas aus Atomen, die von einer elektromagnetischen Falle in einer Reihe festgehalten werden. Sie können bloß ihre Energien tauschen, wie die Kugeln beim Newtonpendel. Man müsste daher erwarten, dass der Kühlmechanismus, bei dem man einfach einzelne Teilchen aus dem Gas entfernt, dort versagt.

Denn sobald die schnellsten Teilchen entfernt sind, dürfte es in diesem vereinfachten Modell nie wieder schnelle Teilchen geben. Wenn unter den Kugeln im Newtonpendel eine bestimmte Energie nicht mehr vorkommt, wird auch nie wieder eine Kugel genau diese Energie annehmen.

Erstaunlicherweise verhält es sich mit dem eindimensionalen Gas aber anders. Es lässt sich durch fortdauernde Entfernung von Teilchen abkühlen – und zwar viel weiter, als man mit dem einfachen Bild langsamer und schnellerer Teilchen erklären kann.

Wellen statt Teilchen

Das liegt daran, dass man das Temperaturverhalten der Teilchen nur quantenmechanisch verstehen kann. „Es geht nicht darum, dass wie beim Newtonpendel zwei Teilchen zusammenstoßen, man muss stattdessen kollektive Anregungen betrachten, die sich auf viele Teilchen verteilen – so wie eine Wasserwelle, an der auch viele Wassermoleküle gleichzeitig beteiligt sind“, sagt Jörg Schmiedmayer.

In diesen Quantenwellen ist die Energie des Systems gespeichert, und je mehr Teilchen man aus dem System entfernt, umso kleiner werden die Wellen. Somit hat man auf quantenphysikalische Weise einen Kühlungsmechanismus, den es nach dem bisherigen Verständnis gar nicht geben dürfte.

„Für uns ist entscheidend, dass sich das Gas mit sinkender Temperatur immer quantenmechanischer verhält“, sagt Jörg Schmiedmayer. „Das ist spannend, denn genau das wollen wir erreichen: Oft untersucht man im Labor Quantensysteme, die nur aus wenigen Teilchen bestehen – zum Beispiel ein Atom mit ein paar Elektronen. Wir haben hier aber ein System, das sich quantenphysikalisch verhält und aus tausenden Atomen besteht.“

Rückfragehinweis:
Dipl.-Ing. Bernhard Rauer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141849
bernhard.rauer@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141888
hannes-joerg.schmiedmayer@tuwien.ac.at
schmiedmayer@AtomChip.org

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.030402 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Abkühlen Gase Quantenkühlschrank Quantum Wechselwirkungen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten