Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Quantenkühlschrank

01.02.2016

Die Quanten machen es möglich: An der TU Wien wurde untersucht, warum sich bestimmte Gase viel weiter abkühlen lassen, als man nach den klassischen Gesetzen der Physik erwarten würde.

Wenn man kalte Milch in heißen Kaffee gießt, stellt sich rasch ein Temperaturgleichgewicht ein. Es kommt zu Wechselwirkungen zwischen Milchtröpfchen und Kaffeepartikel und nach kurzer Zeit haben beide dieselbe durchschnittliche Energie.


Bernhard Rauer im Labor an der TU Wien

TU Wien

Diesen inneren Temperaturausgleich bezeichnet man als „Thermalisierung“. Sie spielt auch beim Abkühlen ultrakalter Gase eine wichtige Rolle. Erstaunlicherweise lassen sich aber auch Gase abkühlen, bei denen dieser Effekt eigentlich unterdrückt ist. An der TU Wien untersuchte man das genauer und stellte fest, dass es sich um eine spezielle, quantenphysikalische Form der Kühlung handelt.

Fort mit den heißen Teilchen!

„Die einzelnen Teilchen in einer Flüssigkeit oder in einem Gas haben unterschiedlich viel Energie“, erklärt Prof. Jörg Schmiedmayer vom Atominstitut der TU Wien. Wie diese Energien verteilt sind, hängt von der Temperatur ab. Je heißer das Gas, umso häufiger kommen Teilchen mit höheren Energien vor.

Daher kann man beim Abkühlen von sehr kalten Gasen einen einfachen Trick benutzen: Mit elektromagnetischen Feldern entfernt man immer wieder die Teilchen mit der höchsten Energie, die anderen mischen sich, und es stellt sich wieder eine typische Energieverteilung ein – diesmal aber bei etwas niedrigerer Temperatur.

„Das ist so ähnlich, wie beim Kaffee, wenn man sanft in die Tasse bläst, um ihn zu kühlen“, erklärt Bernhard Rauer, der die Experimente in der Forschungsgruppe von Jörg Schmiedmayer durchgeführt hat. „Die Teilchen mit der höchsten Energie schaffen es, die Flüssigkeit zu verlassen und werden weggeblasen. Im restlichen Kaffee stellt sich schnell wieder ein Gleichgewicht bei einer niedrigeren Temperatur ein.“

Newtonpendel und Teilchenstöße

Es gibt allerdings Fälle, in denen sich niemals eine thermische Temperaturverteilung einstellen kann. Beim sogenannten Newtonpendel hängt man mehrere Metallkugeln in einer geraden Linie auf, sodass sie einander berühren.

Wenn man die erste Kugel auslenkt und auf die anderen prallen lässt, wird die letzte Kugel auf der anderen Seite der Kugelreihe weggestoßen, die übrigen Kugeln bewegen sich nicht. „In diesem Fall können die Kugeln also bloß Energien tauschen, es stellt sich keine thermische Verteilung verschiedener Energien ein“, erklärt Bernhard Rauer.

Bernhard Rauer untersuchte an der TU Wien ein ganz ähnliches System: Ein eindimensionales Gas aus Atomen, die von einer elektromagnetischen Falle in einer Reihe festgehalten werden. Sie können bloß ihre Energien tauschen, wie die Kugeln beim Newtonpendel. Man müsste daher erwarten, dass der Kühlmechanismus, bei dem man einfach einzelne Teilchen aus dem Gas entfernt, dort versagt.

Denn sobald die schnellsten Teilchen entfernt sind, dürfte es in diesem vereinfachten Modell nie wieder schnelle Teilchen geben. Wenn unter den Kugeln im Newtonpendel eine bestimmte Energie nicht mehr vorkommt, wird auch nie wieder eine Kugel genau diese Energie annehmen.

Erstaunlicherweise verhält es sich mit dem eindimensionalen Gas aber anders. Es lässt sich durch fortdauernde Entfernung von Teilchen abkühlen – und zwar viel weiter, als man mit dem einfachen Bild langsamer und schnellerer Teilchen erklären kann.

Wellen statt Teilchen

Das liegt daran, dass man das Temperaturverhalten der Teilchen nur quantenmechanisch verstehen kann. „Es geht nicht darum, dass wie beim Newtonpendel zwei Teilchen zusammenstoßen, man muss stattdessen kollektive Anregungen betrachten, die sich auf viele Teilchen verteilen – so wie eine Wasserwelle, an der auch viele Wassermoleküle gleichzeitig beteiligt sind“, sagt Jörg Schmiedmayer.

In diesen Quantenwellen ist die Energie des Systems gespeichert, und je mehr Teilchen man aus dem System entfernt, umso kleiner werden die Wellen. Somit hat man auf quantenphysikalische Weise einen Kühlungsmechanismus, den es nach dem bisherigen Verständnis gar nicht geben dürfte.

„Für uns ist entscheidend, dass sich das Gas mit sinkender Temperatur immer quantenmechanischer verhält“, sagt Jörg Schmiedmayer. „Das ist spannend, denn genau das wollen wir erreichen: Oft untersucht man im Labor Quantensysteme, die nur aus wenigen Teilchen bestehen – zum Beispiel ein Atom mit ein paar Elektronen. Wir haben hier aber ein System, das sich quantenphysikalisch verhält und aus tausenden Atomen besteht.“

Rückfragehinweis:
Dipl.-Ing. Bernhard Rauer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141849
bernhard.rauer@tuwien.ac.at

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141888
hannes-joerg.schmiedmayer@tuwien.ac.at
schmiedmayer@AtomChip.org

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.030402 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Abkühlen Gase Quantenkühlschrank Quantum Wechselwirkungen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie