Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den magischen Zahlen der Quantenmaterie mit kalten Atomen auf der Spur

08.01.2015

Internationales Forscherteam bestimmt die topologische Zahl eines künstlichen Festkörpers in extremen Magnetfeldern

Die Topologie ist eigentlich ein Teilgebiet der Mathematik, das sich mit der Klassifizierung von geometrischen Objekten befasst. In der Physik wird sie dazu genutzt außergewöhnliche Zustände der Materie, sogenannte topologische Zustände, vorherzusagen und zu beschreiben, die gewöhnlich bei tiefen Temperaturen auftreten. Ihre einzigartigen elektrischen Eigenschaften machen sie interessant für eine Reihe technologischer Anwendungen.


Abb.1: Klassifizierung geometrischer Objekte und Topologie von Quantenmaterie.

Lehrstuhl für Quantenoptik, LMU


Abb. 2: Schematische Darstellung der Chernzahl-Messung durch Anlegen einer Kraft.

Lehrstuhl für Quantenoptik, LMU

Die große Stabilität dieser topologischen Zustände beruht auf den für sie charakteristischen magischen ganzen Zahlen, den sogenannten Chernzahlen, die besonders unempfindlich gegenüber Störungen sind. Erstmals ist es nun einem internationalen Forscherteam gelungen, die topologische Chernzahl in einem nicht-elektronischen System mit hoher Präzision zu messen.

Die Experimente wurden in der Gruppe von Prof. Immanuel Bloch (Ludwig-Maximilians-Universität, München und Max-Planck-Institut für Quantenoptik, Garching) in Zusammenarbeit mit Nathan Goldman und Sylvain Nascimbène vom Collège de France in Paris und Nigel Cooper von der Cambridge University an einem System aus ultrakalten bosonischen Atomen durchgeführt.

Unter extremen Bedingungen wie besonders starken Magnetfeldern und sehr tiefen Temperaturen können sich exotische Materiephasen mit äußerst ungewöhnlichem elektrischen Verhalten bilden, zum Beispiel dem verlustfreien Leiten elektrischer Ströme oder dem Auftreten quantisierter elektrischer Widerstände. Diese Materiephasen sind topologische Zustände, die durch magische (topologische) Zahlen beschrieben werden.

Diese werden in der Mathematik zur Klassifizierung abstrakter geometrischer Objekte verwendet [zum Beispiel die Anzahl von Löchern in einer Oberfläche, Abb. 1a] und sind stabil gegenüber kleinen Formänderungen. Die Tatsache, dass bestimmten Quantenzuständen von Materie topologische Zahlen zugeordnet werden können, macht deren elektrische Eigenschaften robust gegenüber Störungen. Deshalb hofft man, diese Zustände für technologische Anwendungen, z.B. in der Spintronik oder in Quantencomputern, nutzen zu können, was die experimentelle Suche nach neuen Materialien mit topologischen Eigenschaften motiviert.

Topologische Zustände wurden erstmals im Zusammenhang mit dem Quanten-Hall-Effekt entdeckt, für dessen Beobachtung 1985 der Nobelpreis verliehen wurde. Darunter versteht man das Phänomen, dass der elektrische Widerstand in Materialien, welche extremen Magnetfeldern ausgesetzt sind, bei ausreichend niedrigen Temperaturen große stabile Plateaus aufweist.

Dieses Verhalten zeigt sich unabhängig von der Probe. Erstaunlicherweise hat diese universelle Eigenschaft ihren Ursprung in der Topologie, denn jedes Plateau in der Widerstandsmessung wird durch eine topologische Zahl, die Chernzahl, bestimmt. „Die besondere Schönheit dieses Ergebnisses liegt darin, dass diese magischen mathematischen Zahlen die intrinsischen Eigenschaften der Elektronen, die sich in dem Material bewegen, widerspiegeln; es ist erstaunlich, dass diese abstrakten Zahlen zu tatsächlich beobachtbaren Phänomenen führen“, sagt der Theoretiker Nathan Goldman.

Eine interessante Möglichkeit, topologische Phasen von Materie zu untersuchen, stellen syn-thetische Materialien aus kalten Atomen dar, die durch Laserstrahlen kontrolliert werden. In diesen sehr flexiblen und gut kontrollierbaren Experimenten werden neutrale Atome in perio-dischen Strukturen gefangen, die durch stehende optische Wellen erzeugt werden. Kalte Atome, die sich in diesen optischen Gittern bewegen, eignen sich gut dafür, das Verhalten von Elektronen in realen Materialien nachzubilden.

Im Gegensatz zu Elektronen sind Atome jedoch elektrisch neutral; in einem externen Magnetfeld wäre aus diesem Grund kein Hall-Effekt zu beobachten. Das Münchner Team entwickelte deshalb neue experimentelle Metho-den, mit denen künstliche Magnetfelder für neutrale Atome erzeugt wurden. In diesen Auf-bauten verhalten sich Atome wie geladene Teilchen in Magnetfeldern und bieten somit eine neue Möglichkeit, topologische Phasen in einer besonders gut kontrollierbaren und reinen Umgebung zu erforschen.

Der optische Gitteraufbau in den Münchner Experimenten wurde speziell dazu entworfen um topologische Eigenschaften zu untersuchen (Abb. 1b). In der Tat führt ein effektives Magnet-feld im Gitter dazu, dass die kalten Atome durch eine von Null verschiedene, topologische Chernzahl ausgezeichnet sind νch = 1. Nathan Goldman erklärt: „In Analogie zum elektrischen Hall-Effekt erwartet man, dass die Atome eine transversale Bewegung relativ zu der auf sie wirkenden Kraft erfahren (Abb. 2). Darüber hinaus sagt unsere Theorie vorher, dass diese transversale Ablenkung proportional zur topologischen Chernzahl (νch = 1) ist.“

Die Experimentalphysiker haben eine Kraft an die Atome im optischen Gitter gelegt und die re-sultierende Ablenkung mithilfe von Bildern der Atomwolke analysiert. Aus diesen Messungen konnten sie einen experimentellen Wert der Chernzahl νexp = 0.99(5) bestimmen. Dieses Er-gebnis stellt die erste Chernzahl-Messung in einem nicht-elektronischen System dar. Im Ge-gensatz zu elektronischen Messungen, die auf Randströmen beruhen, gehen in die Münchner Messung die Eigenschaften des ganzen Quantensystems ein.

Diese Messungen stellen einen wichtigen Schritt zur Erzeugung und zum Nachweis topolo-gischer Zustände mit ultrakalten Atomen dar. Darüber hinaus könnten Wechselwirkungen zwischen den Atomen zu neuen spannenden Materiezuständen führen, wie zum Beispiel die fraktionalen Chern-Isolatoren. [N.G. und M.A.]

Bildunterschriften:

Abb.1: Klassifizierung geometrischer Objekte und Topologie von Quantenmaterie. a. Die drei darge-stellten geometrischen Objekte können durch ihre Topologie, die Anzahl der vorhandenen Löcher g in der Oberfläche, klassifiziert werden. Ein Doughnut ist in diesem Sinne äquivalent zu einer Tasse (g=1), jedoch nicht zu einem Ball (g=0). b. Schematische Darstellung eines Quantengases in einem zweidimensionalen optischen Gitter: ein herkömmliches Gitter (links) und eines mit externem Magnetfeld (rechts). Die zugehörigen Quantenphasen werden durch unterschiedliche topologische Zahlen charakterisiert, was schematisch mithilfe des Balls bzw. des Doughnuts dargestellt ist.

Abb. 2: Schematische Darstellung der Chernzahl-Messung durch Anlegen einer Kraft. a. In einem gewöhnlichen Gitter mit Chernzahl Null werden die Atome nicht abgelenkt. b. Bei einer Chernzahl νch = 1 erfahren die Atome eine Ablenkung senkrecht zur Kraft.

Originalveröffentlichung:
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch & N. Goldman
Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
Nature Physics, 22. Dezember 2014, Advance Online Publication, DOI:10.1038/nphys3171

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Prof. Dr. Nathan Goldman
Collège de France, Laboratoire Kastler Brossel
11, place Marcelin Berthelot
75005 Paris, France, und
Center for Nonlinear Phenomena and Complex Systems,
Université Libre de Bruxelles, CP 231, Campus Plaine,
B-1050 Brussels, Belgium
Telefon: +32 2 6505797
E-mail: nathan.goldman@lkb.ens.fr und ngoldman@ulb.ac.be

M. Sc. Monika Aidelsburger
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 / 2180 -6119
E-Mail: monika.aidelsburger@physik.uni-muenchen.de

Weitere Informationen:

http://www.mpq.mpg.de
http://www.quantum-munich.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie