Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dauerbetrieb der Tokamaks rückt näher

27.04.2016

Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

Die ihrer Natur nach in Pulsen arbeitenden Fusionsanlagen vom Typ Tokamak sind auf dem Weg zum Dauerbetrieb. Alexander Bock, Wissenschaftler im Max-Planck-Institut für Plasmaphysik in Garching, untersuchte, wie man den magnetischen Käfig für das Plasma anders als üblich – und für Dauerbetrieb tauglich – aufrechterhalten kann. Mit Erfolg: In speziell geführten Entladungen an der Fusionsanlage ASDEX Upgrade gelang es, den 800 Kiloampere starken elektrischen Strom im Plasma von außen zu treiben – unter Bedingungen, die auch für den Testreaktor ITER oder ein Demonstrationskraftwerk gelten.


Während des Aufbau von ASDEX Upgrade waren Plasmagefäß und Magnetspulen noch gut sichtbar.

Foto: IPP, 1989

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer ringförmigen Vakuumkammer.

Für einen stabilen und dichten magnetischen Käfig müssen die Feldlinien innerhalb der kreisförmigen Kammer in großen, ineinanderliegenden Schrauben umlaufen. So spannen sie geschlossene, ineinander geschachtelte Flächen auf – wie die Jahresringflächen eines Baumstamms. Auf diesen magnetischen Flächen, auf denen die Plasmateilchen laufen, sind die mittlere Feldlinienverdrillung sowie Dichte und Temperatur des Plasmas jeweils konstant, während von Fläche zu Fläche – vom heißen Zentrum nach außen – die Verdrillung der Feldlinien sowie Dichte, Temperatur und Plasmadruck abnehmen.

Fusionsanlagen vom Typ Tokamak – wie ASDEX Upgrade in Garching oder der internationale Testreaktor ITER, der gerade im französischen Cadarache aufgebaut wird – benutzen zum Aufbau des Magnetkäfigs zwei sich überlagernde Magnetfelder: erstens ein ringförmiges Feld, das durch flache äußere Spulen erzeugt wird, und zweitens das Feld eines im Plasma fließenden Stroms. In dem kombinierten Feld laufen die Feldlinien dann schraubenförmig um und bauen die magnetischen Flächen auf.

Der Plasmastrom wird normalerweise pulsweise durch eine Transformatorspule im Plasma induziert. Daher arbeitet die gesamte Anlage nicht kontinuierlich, sondern in Pulsen – ein Manko der ansonsten so erfolgreichen Tokamaks, erklärt IPP-Wissenschaftler Alexander Bock: „Zum Beispiel könnte die ständig wechselnde Belastung die Lebensdauer des Kraftwerks verkürzen“.

Abgesehen davon macht der Strom das Plasma anfällig für eine Vielzahl von Instabilitäten, die den Einschluss des Plasmas stören können. Anders ist dies übrigens bei Anlagen vom Typ Stellarator, deren weltweit größte – Wendelstein 7-X – kürzlich im Greifswalder Teil des IPP in Betrieb ging. Weil sie das gesamte Feld allein durch komplex geformte Spulen, d.h. ohne Plasmastrom aufbauen, ist hier Dauerbetrieb möglich.

Deshalb werden schon lange Methoden untersucht, auch in einem Tokamak Dauerbetrieb zu erreichen, d.h. den Strom im Plasma nicht pulsweise per Transformator, sondern kontinuierlich – zum Beispiel durch Einstrahlen von Hochfrequenzwellen oder Einschießen von Teilchenstrahlen – zu erzeugen. In seiner Doktorarbeit untersuchte Alexander Bock, welche Effekte sich damit erreichen lassen.

Der große Vorteil: Mit einem zumindest teilweise von außen getriebenen Strom lässt sich das „übliche“ Profil des Stroms im Plasma beeinflussen und damit die Verdrillung der Feldlinien maßgeschneidert verändern. Senkt man zum Beispiel den Plasmastrom im Plasmazentrum, nimmt die Verdrillung der Feldlinien dort ab. Über komplexe Zusammenhänge der kollektiven Teilchenbewegungen verstärkt dies den sogenannten Bootstrap-Strom am Plasmarand.

Dieser elektrische Strom, den das Plasma bei Anwesenheit von Druckunterschieden von alleine aufbaut, kann einige zehn Prozent des Gesamtstroms ausmachen. Er lässt sich daher nutzen, um die Entladungen unabhängiger vom Transformator zu machen und längere Pulse zu erreichen – wenn es gelingt, einige Nebenbedingungen zu erfüllen, damit das sich quasi selbst einschließende Plasma im stabilen Gleichgewicht bleibt. „Im besten Fall“, so Alexander Bock, „könnte ein solcher ‚Advanced Tokamak’ stationär betrieben werden“. Zusätzlich sollte ein flacherer Verlauf der Verdrillung auch Turbulenzen im Plasma behindern und dadurch den Einschluss verbessern.

Dies ist dem ASDEX Upgrade-Team nun durch sorgfältige Steuerung der Entladungen tatsächlich gelungen – und zwar im Unterschied zu früheren Experimenten an der Garchinger Anlage, aber auch an DIII-D in den USA, dem europäischen JET oder dem japanischen JT-60U – erstmals an einer Maschine mit rein metallischer Innenwand. Denn seit 2007 ist die innere Wand des Plasmagefäßes von ASDEX Upgrade komplett mit Wolfram bedeckt, dem Metall mit dem höchsten Schmelzpunkt.

Unter diesen herausfordernden, aber reaktorrelevanten Bedingungen gelang jetzt der Betrieb nahezu ohne Transformator, und dies bei stabilem Plasma, hohem Plasmadruck und guten Einschlusseigenschaften in einem Wertebereich, in dem auch spätere Kraftwerke arbeiten sollen. Gezielt nahe dem Plasmazentrum eingestrahlte Mikrowellen und Teilchenstrahlen veränderten den Plasmapuls merklich: Für drei Sekunden blieb der 800 Kiloampere starke Plasmastrom auch ohne Transformator konstant.

Der Bootstrap-Strom machte dabei die Hälfte des Gesamtstroms aus. Wäre die Anlage nicht mit normalleitenden Kupferspulen, sondern, wie bei ITER vorgesehen, mit supraleitenden Magnetspulen ausgerüstet, hätte diese Phase ungleich länger ausgedehnt werden können –potentiell bis hin zum Dauerbetrieb. Alexander Bocks Fazit: „Die Entladungen zeigen, dass der attraktive Betrieb ohne Transformator in ASDEX Upgrade möglich ist. Es lohnt sich also, die Studien zum Advanced Tokamak fortzusetzen“.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2016/04_16

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie