Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Unsichtbare sichtbar machen: Forscher messen Elektronenorbitale von Molekülen in 3D

05.10.2015

Vielen sind sie vielleicht noch aus dem Schulunterricht bekannt: Oftmals als bunte Wolken oder Ballons dargestellt, geben Elektronenorbitale Auskunft über den Aufenthaltsort der Elektronen von Atomen und Molekülen. Wissenschaftlerinnen und Wissenschaftler der Karl-Franzens-Universität Graz, des Forschungszentrums Jülich und der Physikalisch-Technischen Bundesanstalt ist es nun gelungen, diese Gebilde in allen drei Dimensionen experimentell zu erfassen. Für ihre Untersuchung nutzten sie die Weiterentwicklung einer Methode, mit der sie die Orbitale vor zwei Jahren bereits zweidimensional sichtbar machen konnten. Ihre Ergebnisse haben sie im Fachmagazin "Nature Communications" veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen behandelt. Diese Wellennatur lässt sich über die räumliche Wellenfunktion, das Orbital, beschreiben.


Darstellung des Prinzips der 3D-Rekonstruktion mittels PhotoelektronenspektroskopiePrinzip der 3D-Rekonstruktion mittels Photoelektronenspektroskopie: durch Photonen herausgelöste Elektronen aus der Elektronenhülle lassen Rückschlüsse auf die Orbitale zu. Mit unterschiedlichen Photonenenergien lässt sich die dreidimensional Struktur des Orbitals erfassen.

Copyright: Forschungszentrum Jülich

"Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Eigenschaften eines Materials ableiten", erklärt Prof. Peter Puschnig von der Karl-Franzens-Universität Graz. Doch die Gesetze der Quantenmechanik bringen es mit sich, dass man nicht direkt beobachten kann, wie sich ein Elektron als Welle ausbreitet.

Ein kanadisch-japanisches Wissenschaftler-Team zeigte im Jahr 2004 mithilfe eines hochenergetischen Lasers, dass sich diese Orbitalfunktion – zumindest für einfache zweiatomige Moleküle – über Umwege trotzdem abbilden lässt. Rund zehn Jahre später gelang es den Grazer und Jülicher Forschern erstmals, auch solche Orbitale zu erfassen, die sich über größere, komplexe Moleküle erstrecken.

Für ihre Messungen nutzten sie eine Form der sogenannten Photoelektronenspektroskopie, die auf dem Photoeffekt beruht: Dabei wird eine Molekülschicht auf einer Silberoberfläche mit Photonen, also Lichtteilchen, beschossen, woraufhin sich die energetisch angeregten Elektronen herauslösen. "Diese fliegen danach nicht willkürlich durch den Raum, sondern lassen aufgrund der Winkel- und Energieverteilung Rückschlüsse auf die Molekülorbitale zu", so Puschnig.

Mit einer Weiterentwicklung der Methode ist es den Wissenschaftler nun gelungen, die Sichtbarkeit der Orbitale von der zwei- auf die dreidimensionale Ebene zu bringen. Dazu war es nötig, das Experiment mit verschiedenen Energien, also verschiedenen Wellenlängen des Lichts, im ultravioletten Bereich durchzuführen.

"Mit unterschiedlichen Wellenlängen lassen sich zusätzliche räumliche Tiefeninformationen gewinnen, ähnlich wie mit einer Kamera, die ein Motiv wiederholt mit variabler Brennweite aufnimmt", erläutert Prof. Stefan Tautz vom Forschungszentrum Jülich. Doch lange ließen sich die Daten, die aus unterschiedlichen Messreihen stammen, nicht zu einem räumlichen Modell vereinen.

"Bislang konnten wir die gemessenen Intensitäten, die von verschiedenen Photonenenergien herrühren, nicht miteinander vergleichen", berichtet Prof. Michael Ramsey vom Institut für Physik der Uni Graz. "Zusammen mit der Energie ändert sich auch der Photonenfluss, also die absolute Zahl der eingehenden Photonen, die für die 3D-Rekonstruktion bekannt sein muss. Doch in der Regel lässt sich dieser Wert gar nicht genau erfassen", ergänzt Dr. Sergey Subach vom Jülicher Peter Grünberg Institut (PGI-3).

Um vergleichbare Werte zu erhalten, installierten die Jülicher Forscher ihren Detektor daher an der Metrology Light Source (MLS) der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin. "Unsere Synchrotronstrahlungsquelle ist weltweit eine der wenigen, die einen genau kalibrierten Photonenfluss bereitstellt", erklärt Dr. Alexander Gottwald von der PTB. Anhand der Daten aus den kalibrierten Messungen konnten die Grazer Wissenschaftler im Rahmen des Forschungsschwerpunkts "Modelle und Simulation" anschließend die Elektronenverteilung in 3D rekonstruieren.

Damit hat das Forschungsteam aus Jülich, Graz und Berlin die Wellenfunktion, die sich im quantenmechanischen Sinne eigentlich gar nicht direkt beobachten lässt, dennoch sichtbar gemacht. Die Ergebnisse sind ein lang gesuchter Beleg für die herrschenden Modellvorstellungen. So bescheinigte etwa der Orbitaltheoretiker Kenichi Fukui, gemeinsam mit Roald Hoffmann 1981 mit dem Nobelpreis für Chemie ausgezeichnet, dem Konzept der Molekülorbitale im Jahre 1977 eine "somewhat unreal nature" (Intern. J. Quantum Chem. 12, 277), also eine "irgendwie unwirkliche Natur".

Und wie Hoffmann 1999 feststellte, räumen selbst Theoretiker, die in ihrer Arbeit Orbitale tagtäglich benutzen, ihnen nicht die Realität ein, die sie verdienen: "[…] the physicists and chemists who use density functional theory so fruitfully have by and large shied away from attributing to […] orbitals the reality that (we think) they deserve"(J. am. Chem. Soc. 121, 3414).

Das Ergebnis ist darüber hinaus auch für die Physik relevant: "Unser Experiment liefert eine interessante neue physikalische Erkenntnis über den zugrundeliegenden Photoeffekt", berichtet Stefan Tautz. Demnach lassen sich die Elektronen, die dabei herausgelöst werden, ganz ähnlich wie freie Elektronen beschreiben – eine Vorstellung, die man vor fast 50 Jahren aufgrund der angenommenen Streuung an den Atomkernen eigentlich schon verworfen hatte.


Originalpublikation:

S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, and P. Puschnig, "Exploring three-dimensional orbital imaging with energy dependent photoemission tomography", Nature Communications (2015)

Weitere Informationen:

Pressemitteilung des Forschungszentrums Jülich "Beobachtung des Nicht-Beobachtbaren" (17. Dez. 2013)

Pressemitteilung der Karl-Franzens-Universität Graz "Vermessung von Molekülen" (17. Dez. 2013)

Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)

Metrology Light Source - Physikalisch-Technische Bundesanstalt

Ansprechpartner:

Assoz.-Prof. Dr. Peter Puschnig
Institut für Physik der Karl-Franzens-Universität Graz
Tel.: +43 316 380-5230
E-Mail: peter.puschnig@uni-graz.at

Prof. Dr. F. Stefan Tautz
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Prof. Dr. Mathias Richter
Physikalisch-Technische Bundesanstalt
Tel. +49 30 3481-7100
E-Mail: mathias.richter@ptb.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel.: +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics