Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Unsichtbare sichtbar machen: Forscher messen Elektronenorbitale von Molekülen in 3D

05.10.2015

Vielen sind sie vielleicht noch aus dem Schulunterricht bekannt: Oftmals als bunte Wolken oder Ballons dargestellt, geben Elektronenorbitale Auskunft über den Aufenthaltsort der Elektronen von Atomen und Molekülen. Wissenschaftlerinnen und Wissenschaftler der Karl-Franzens-Universität Graz, des Forschungszentrums Jülich und der Physikalisch-Technischen Bundesanstalt ist es nun gelungen, diese Gebilde in allen drei Dimensionen experimentell zu erfassen. Für ihre Untersuchung nutzten sie die Weiterentwicklung einer Methode, mit der sie die Orbitale vor zwei Jahren bereits zweidimensional sichtbar machen konnten. Ihre Ergebnisse haben sie im Fachmagazin "Nature Communications" veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen behandelt. Diese Wellennatur lässt sich über die räumliche Wellenfunktion, das Orbital, beschreiben.


Darstellung des Prinzips der 3D-Rekonstruktion mittels PhotoelektronenspektroskopiePrinzip der 3D-Rekonstruktion mittels Photoelektronenspektroskopie: durch Photonen herausgelöste Elektronen aus der Elektronenhülle lassen Rückschlüsse auf die Orbitale zu. Mit unterschiedlichen Photonenenergien lässt sich die dreidimensional Struktur des Orbitals erfassen.

Copyright: Forschungszentrum Jülich

"Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Eigenschaften eines Materials ableiten", erklärt Prof. Peter Puschnig von der Karl-Franzens-Universität Graz. Doch die Gesetze der Quantenmechanik bringen es mit sich, dass man nicht direkt beobachten kann, wie sich ein Elektron als Welle ausbreitet.

Ein kanadisch-japanisches Wissenschaftler-Team zeigte im Jahr 2004 mithilfe eines hochenergetischen Lasers, dass sich diese Orbitalfunktion – zumindest für einfache zweiatomige Moleküle – über Umwege trotzdem abbilden lässt. Rund zehn Jahre später gelang es den Grazer und Jülicher Forschern erstmals, auch solche Orbitale zu erfassen, die sich über größere, komplexe Moleküle erstrecken.

Für ihre Messungen nutzten sie eine Form der sogenannten Photoelektronenspektroskopie, die auf dem Photoeffekt beruht: Dabei wird eine Molekülschicht auf einer Silberoberfläche mit Photonen, also Lichtteilchen, beschossen, woraufhin sich die energetisch angeregten Elektronen herauslösen. "Diese fliegen danach nicht willkürlich durch den Raum, sondern lassen aufgrund der Winkel- und Energieverteilung Rückschlüsse auf die Molekülorbitale zu", so Puschnig.

Mit einer Weiterentwicklung der Methode ist es den Wissenschaftler nun gelungen, die Sichtbarkeit der Orbitale von der zwei- auf die dreidimensionale Ebene zu bringen. Dazu war es nötig, das Experiment mit verschiedenen Energien, also verschiedenen Wellenlängen des Lichts, im ultravioletten Bereich durchzuführen.

"Mit unterschiedlichen Wellenlängen lassen sich zusätzliche räumliche Tiefeninformationen gewinnen, ähnlich wie mit einer Kamera, die ein Motiv wiederholt mit variabler Brennweite aufnimmt", erläutert Prof. Stefan Tautz vom Forschungszentrum Jülich. Doch lange ließen sich die Daten, die aus unterschiedlichen Messreihen stammen, nicht zu einem räumlichen Modell vereinen.

"Bislang konnten wir die gemessenen Intensitäten, die von verschiedenen Photonenenergien herrühren, nicht miteinander vergleichen", berichtet Prof. Michael Ramsey vom Institut für Physik der Uni Graz. "Zusammen mit der Energie ändert sich auch der Photonenfluss, also die absolute Zahl der eingehenden Photonen, die für die 3D-Rekonstruktion bekannt sein muss. Doch in der Regel lässt sich dieser Wert gar nicht genau erfassen", ergänzt Dr. Sergey Subach vom Jülicher Peter Grünberg Institut (PGI-3).

Um vergleichbare Werte zu erhalten, installierten die Jülicher Forscher ihren Detektor daher an der Metrology Light Source (MLS) der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin. "Unsere Synchrotronstrahlungsquelle ist weltweit eine der wenigen, die einen genau kalibrierten Photonenfluss bereitstellt", erklärt Dr. Alexander Gottwald von der PTB. Anhand der Daten aus den kalibrierten Messungen konnten die Grazer Wissenschaftler im Rahmen des Forschungsschwerpunkts "Modelle und Simulation" anschließend die Elektronenverteilung in 3D rekonstruieren.

Damit hat das Forschungsteam aus Jülich, Graz und Berlin die Wellenfunktion, die sich im quantenmechanischen Sinne eigentlich gar nicht direkt beobachten lässt, dennoch sichtbar gemacht. Die Ergebnisse sind ein lang gesuchter Beleg für die herrschenden Modellvorstellungen. So bescheinigte etwa der Orbitaltheoretiker Kenichi Fukui, gemeinsam mit Roald Hoffmann 1981 mit dem Nobelpreis für Chemie ausgezeichnet, dem Konzept der Molekülorbitale im Jahre 1977 eine "somewhat unreal nature" (Intern. J. Quantum Chem. 12, 277), also eine "irgendwie unwirkliche Natur".

Und wie Hoffmann 1999 feststellte, räumen selbst Theoretiker, die in ihrer Arbeit Orbitale tagtäglich benutzen, ihnen nicht die Realität ein, die sie verdienen: "[…] the physicists and chemists who use density functional theory so fruitfully have by and large shied away from attributing to […] orbitals the reality that (we think) they deserve"(J. am. Chem. Soc. 121, 3414).

Das Ergebnis ist darüber hinaus auch für die Physik relevant: "Unser Experiment liefert eine interessante neue physikalische Erkenntnis über den zugrundeliegenden Photoeffekt", berichtet Stefan Tautz. Demnach lassen sich die Elektronen, die dabei herausgelöst werden, ganz ähnlich wie freie Elektronen beschreiben – eine Vorstellung, die man vor fast 50 Jahren aufgrund der angenommenen Streuung an den Atomkernen eigentlich schon verworfen hatte.


Originalpublikation:

S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, and P. Puschnig, "Exploring three-dimensional orbital imaging with energy dependent photoemission tomography", Nature Communications (2015)

Weitere Informationen:

Pressemitteilung des Forschungszentrums Jülich "Beobachtung des Nicht-Beobachtbaren" (17. Dez. 2013)

Pressemitteilung der Karl-Franzens-Universität Graz "Vermessung von Molekülen" (17. Dez. 2013)

Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)

Metrology Light Source - Physikalisch-Technische Bundesanstalt

Ansprechpartner:

Assoz.-Prof. Dr. Peter Puschnig
Institut für Physik der Karl-Franzens-Universität Graz
Tel.: +43 316 380-5230
E-Mail: peter.puschnig@uni-graz.at

Prof. Dr. F. Stefan Tautz
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Prof. Dr. Mathias Richter
Physikalisch-Technische Bundesanstalt
Tel. +49 30 3481-7100
E-Mail: mathias.richter@ptb.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel.: +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften