Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Unsichtbare sichtbar machen: Forscher messen Elektronenorbitale von Molekülen in 3D

05.10.2015

Vielen sind sie vielleicht noch aus dem Schulunterricht bekannt: Oftmals als bunte Wolken oder Ballons dargestellt, geben Elektronenorbitale Auskunft über den Aufenthaltsort der Elektronen von Atomen und Molekülen. Wissenschaftlerinnen und Wissenschaftler der Karl-Franzens-Universität Graz, des Forschungszentrums Jülich und der Physikalisch-Technischen Bundesanstalt ist es nun gelungen, diese Gebilde in allen drei Dimensionen experimentell zu erfassen. Für ihre Untersuchung nutzten sie die Weiterentwicklung einer Methode, mit der sie die Orbitale vor zwei Jahren bereits zweidimensional sichtbar machen konnten. Ihre Ergebnisse haben sie im Fachmagazin "Nature Communications" veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen behandelt. Diese Wellennatur lässt sich über die räumliche Wellenfunktion, das Orbital, beschreiben.


Darstellung des Prinzips der 3D-Rekonstruktion mittels PhotoelektronenspektroskopiePrinzip der 3D-Rekonstruktion mittels Photoelektronenspektroskopie: durch Photonen herausgelöste Elektronen aus der Elektronenhülle lassen Rückschlüsse auf die Orbitale zu. Mit unterschiedlichen Photonenenergien lässt sich die dreidimensional Struktur des Orbitals erfassen.

Copyright: Forschungszentrum Jülich

"Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Eigenschaften eines Materials ableiten", erklärt Prof. Peter Puschnig von der Karl-Franzens-Universität Graz. Doch die Gesetze der Quantenmechanik bringen es mit sich, dass man nicht direkt beobachten kann, wie sich ein Elektron als Welle ausbreitet.

Ein kanadisch-japanisches Wissenschaftler-Team zeigte im Jahr 2004 mithilfe eines hochenergetischen Lasers, dass sich diese Orbitalfunktion – zumindest für einfache zweiatomige Moleküle – über Umwege trotzdem abbilden lässt. Rund zehn Jahre später gelang es den Grazer und Jülicher Forschern erstmals, auch solche Orbitale zu erfassen, die sich über größere, komplexe Moleküle erstrecken.

Für ihre Messungen nutzten sie eine Form der sogenannten Photoelektronenspektroskopie, die auf dem Photoeffekt beruht: Dabei wird eine Molekülschicht auf einer Silberoberfläche mit Photonen, also Lichtteilchen, beschossen, woraufhin sich die energetisch angeregten Elektronen herauslösen. "Diese fliegen danach nicht willkürlich durch den Raum, sondern lassen aufgrund der Winkel- und Energieverteilung Rückschlüsse auf die Molekülorbitale zu", so Puschnig.

Mit einer Weiterentwicklung der Methode ist es den Wissenschaftler nun gelungen, die Sichtbarkeit der Orbitale von der zwei- auf die dreidimensionale Ebene zu bringen. Dazu war es nötig, das Experiment mit verschiedenen Energien, also verschiedenen Wellenlängen des Lichts, im ultravioletten Bereich durchzuführen.

"Mit unterschiedlichen Wellenlängen lassen sich zusätzliche räumliche Tiefeninformationen gewinnen, ähnlich wie mit einer Kamera, die ein Motiv wiederholt mit variabler Brennweite aufnimmt", erläutert Prof. Stefan Tautz vom Forschungszentrum Jülich. Doch lange ließen sich die Daten, die aus unterschiedlichen Messreihen stammen, nicht zu einem räumlichen Modell vereinen.

"Bislang konnten wir die gemessenen Intensitäten, die von verschiedenen Photonenenergien herrühren, nicht miteinander vergleichen", berichtet Prof. Michael Ramsey vom Institut für Physik der Uni Graz. "Zusammen mit der Energie ändert sich auch der Photonenfluss, also die absolute Zahl der eingehenden Photonen, die für die 3D-Rekonstruktion bekannt sein muss. Doch in der Regel lässt sich dieser Wert gar nicht genau erfassen", ergänzt Dr. Sergey Subach vom Jülicher Peter Grünberg Institut (PGI-3).

Um vergleichbare Werte zu erhalten, installierten die Jülicher Forscher ihren Detektor daher an der Metrology Light Source (MLS) der Physikalisch-Technischen Bundesanstalt (PTB) in Berlin. "Unsere Synchrotronstrahlungsquelle ist weltweit eine der wenigen, die einen genau kalibrierten Photonenfluss bereitstellt", erklärt Dr. Alexander Gottwald von der PTB. Anhand der Daten aus den kalibrierten Messungen konnten die Grazer Wissenschaftler im Rahmen des Forschungsschwerpunkts "Modelle und Simulation" anschließend die Elektronenverteilung in 3D rekonstruieren.

Damit hat das Forschungsteam aus Jülich, Graz und Berlin die Wellenfunktion, die sich im quantenmechanischen Sinne eigentlich gar nicht direkt beobachten lässt, dennoch sichtbar gemacht. Die Ergebnisse sind ein lang gesuchter Beleg für die herrschenden Modellvorstellungen. So bescheinigte etwa der Orbitaltheoretiker Kenichi Fukui, gemeinsam mit Roald Hoffmann 1981 mit dem Nobelpreis für Chemie ausgezeichnet, dem Konzept der Molekülorbitale im Jahre 1977 eine "somewhat unreal nature" (Intern. J. Quantum Chem. 12, 277), also eine "irgendwie unwirkliche Natur".

Und wie Hoffmann 1999 feststellte, räumen selbst Theoretiker, die in ihrer Arbeit Orbitale tagtäglich benutzen, ihnen nicht die Realität ein, die sie verdienen: "[…] the physicists and chemists who use density functional theory so fruitfully have by and large shied away from attributing to […] orbitals the reality that (we think) they deserve"(J. am. Chem. Soc. 121, 3414).

Das Ergebnis ist darüber hinaus auch für die Physik relevant: "Unser Experiment liefert eine interessante neue physikalische Erkenntnis über den zugrundeliegenden Photoeffekt", berichtet Stefan Tautz. Demnach lassen sich die Elektronen, die dabei herausgelöst werden, ganz ähnlich wie freie Elektronen beschreiben – eine Vorstellung, die man vor fast 50 Jahren aufgrund der angenommenen Streuung an den Atomkernen eigentlich schon verworfen hatte.


Originalpublikation:

S. Weiß, D. Lüftner, T. Ules, E. M. Reinisch, H. Kaser, A. Gottwald, M. Richter, S. Soubatch, G. Koller, M. G. Ramsey, F. S. Tautz, and P. Puschnig, "Exploring three-dimensional orbital imaging with energy dependent photoemission tomography", Nature Communications (2015)

Weitere Informationen:

Pressemitteilung des Forschungszentrums Jülich "Beobachtung des Nicht-Beobachtbaren" (17. Dez. 2013)

Pressemitteilung der Karl-Franzens-Universität Graz "Vermessung von Molekülen" (17. Dez. 2013)

Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)

Metrology Light Source - Physikalisch-Technische Bundesanstalt

Ansprechpartner:

Assoz.-Prof. Dr. Peter Puschnig
Institut für Physik der Karl-Franzens-Universität Graz
Tel.: +43 316 380-5230
E-Mail: peter.puschnig@uni-graz.at

Prof. Dr. F. Stefan Tautz
Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Prof. Dr. Mathias Richter
Physikalisch-Technische Bundesanstalt
Tel. +49 30 3481-7100
E-Mail: mathias.richter@ptb.de

Pressekontakt:

Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel.: +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie