Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Erdmagnetfeld verdanken wir dem Nickel

12.07.2017

Berechnungen der TU Wien und der Uni Würzburg zeichnen ein neues Bild des Erdmagnetfelds: Mit Eisen alleine lässt sich der Geo-Dynamo nicht erklären. Eine entscheidende Rolle spielt Nickel.

Jeder von uns kann das Erdmagnetfeld ganz einfach mit einem Kompass nachweisen – doch wie es genau entsteht ist eine ausgesprochen komplizierte Frage. Eine wichtige Rolle spielt dabei jedenfalls der heiße Erdkern, der hauptsächlich aus Eisen besteht. In Kombination mit der Eigenrotation der Erde führt er zu einem gewaltigen „Dynamoeffekt“, der das Erdmagnetfeld erzeugt.


Konvektion und Korioliskraft führen zu komplizierten Strömungen im Erdinneren, die das Erdmagnetfeld verursachen. Das wäre ohne Nickel in dieser Form nicht möglich.

TU Wien


Karsten Held (l) und Alessandro Toschi (r)

TU Wien

Doch mit Eisen alleine ist dieser Effekt nicht wirklich zu erklären: Materialwissenschaftliche Berechnungen, die ein Forschungsteam um Prof. Alessandro Toschi und Prof. Karsten Held (TU Wien) und Prof. Giorgio Sangiovanni (Universität Würzburg) nun in „Nature Communications“ veröffentlichten, zeigen, dass die Theorie des Geo-Dynamoeffekts modifiziert werden muss. Entscheidend ist nämlich, dass der Erdkern auch bis zu 20% aus Nickel besteht – ein Metall, das sich unter den extremen Bedingungen im Erdkern anders verhält als das Eisen.

Große Hitze, extremer Druck

Der Erdkern ist ähnlich groß wie der Mond und so heiß wie die Oberfläche der Sonne. Es herrscht ein Druck von mehreren hundert Gigapascal – das entspricht dem Druck, den man ausüben würde, wenn man mehrere Eisenbahnlokomotiven auf einem Quadratmillimeter balancieren könnte.

„Unter diesen extremen Bedingungen verhalten sich manche Materialien ganz anders als wir es gewohnt sind“, sagt Karsten Held. „Die Bedingungen im Experiment nachzustellen ist kaum möglich, aber mit aufwändigen Computersimulationen können wir das Verhalten von Metallen im Erdkern quantenphysikalisch berechnen.“

Die Hitze des Erdkerns muss irgendwie entweichen. Heißes Material steigt in höhere Schichten auf, es entstehen Konvektionsströme. Gleichzeitig treten durch die Erdrotation starke Korioliskräfte auf, insgesamt entstehen so im Erdinneren komplizierte spiralförmige Strömungen. „Wenn in einem solchen Strömungs-System elektrischer Strom zu fließen beginnt, kann dieser ein magnetisches Feld erzeugen, das wiederum den Stromfluss verstärkt, und so weiter – bis ein kräftiges Magnetfeld entstanden ist, das wir an der Erdoberfläche messen können“, erklärt Alessandro Toschi.

Wärmeleitung unter Druck

Doch nach bisherigem Wissen war eigentlich nicht zu erklären, warum es überhaupt zu den Konvektionsströmen kommen sollte. Eisen ist nämlich ein ziemlich guter Wärmeleiter, und bei hohem Druck wird die Wärmeleitfähigkeit von Eisen sogar noch besser. „Würde das Erdinnere nur aus Eisen bestehen, so könnten die frei beweglichen Elektronen im Eisen ganz alleine für den nötigen Wärmetransport sorgen, ohne dass dabei Konvektionsströme entstehen müssten“, sagt Karsten Held. „Dann gäbe es allerdings auch kein Erdmagnetfeld.“

Allerdings enthält der Erdkern auch bis zu 20% Nickel. Bisher hielt man das nicht für bedeutend, doch wie nun gezeigt wurde, spielt der Nickel-Anteil eine ganz entscheidende Rolle. „Nickel verhält sich unter Druck anders als Eisen“, sagt Alessandro Toschi. „Bei hohem Druck streuen die Elektronen im Nickel deutlich häufiger als im Eisen, daher ist die Wärmeleitfähigkeit von Nickel, aber auch des Erdkerns insgesamt, deutlich niedriger als bei einem Kern aus reinem Eisen.“ Aufgrund des Nickel-Anteils kann die Temperatur im Erdkern nicht mehr bloß durch die Bewegung von Elektronen abtransportiert werden und daher ist das Entstehen von Konvektionsströmungen unvermeidlich, die dann letztlich für das Erdmagnetfeld verantwortlich sind.

Um zu diesen Erkenntnissen zu gelangen, war es nötig, unterschiedliche Metallstrukturen am Computer zu simulieren und das Verhalten ihrer Elektronen zu berechnen. Die Vielteilchen-Rechnungen wurden von Andreas Hausoel (Universität Würzburg) durchgeführt, unter anderem auch am Vienna Scientific Cluster (VSC). „Gemeinsam mit unseren Kollegen von der Universität Würzburg untersuchten wir nicht nur Eisen und Nickel sondern auch Legierungen aus diesen beiden Materialien. Auch Störungen und Unregelmäßigkeiten in den Materialien mussten wir speziell berücksichtigen, das macht die Computersimulationen noch aufwändiger“, erklärt Karsten Held.

Diese fortschrittlichen Rechenmethoden sind nicht nur wichtig, um das Erdmagnetfeld besser zu verstehen, sie bieten auch neue Einblicke in die Streuung der Elektronen. Alessadro Toschi ist überzeugt: „In naher Zukunft wird die stetige Verbesserung dieser Algorithmen auch zu spannenden Anwendungen in der Chemie und Biologie, in der Industrie und Technik führen.“

Dieses im Rahmen einer langfristigen Kooperation zwischen der TU Wien und der Uni Würzburg durchgeführte Projekt wurde vom österreichischen FWF und der deutschen DFG im Rahmen der Forschergruppe FOR 1346 „Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials“ unterstützt.

Originalpublikation:
Sangiovanni et al., Local magnetic moments in iron and nickel at ambient and Earth's core conditions; Nature Communications, 2017. DOI: 10.1038/NCOMMS16062

Rückfragehinweise:
Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Prof. Alessandro Toschi
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13762
alessandro.toschi@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics