Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Erdmagnetfeld verdanken wir dem Nickel

12.07.2017

Berechnungen der TU Wien und der Uni Würzburg zeichnen ein neues Bild des Erdmagnetfelds: Mit Eisen alleine lässt sich der Geo-Dynamo nicht erklären. Eine entscheidende Rolle spielt Nickel.

Jeder von uns kann das Erdmagnetfeld ganz einfach mit einem Kompass nachweisen – doch wie es genau entsteht ist eine ausgesprochen komplizierte Frage. Eine wichtige Rolle spielt dabei jedenfalls der heiße Erdkern, der hauptsächlich aus Eisen besteht. In Kombination mit der Eigenrotation der Erde führt er zu einem gewaltigen „Dynamoeffekt“, der das Erdmagnetfeld erzeugt.


Konvektion und Korioliskraft führen zu komplizierten Strömungen im Erdinneren, die das Erdmagnetfeld verursachen. Das wäre ohne Nickel in dieser Form nicht möglich.

TU Wien


Karsten Held (l) und Alessandro Toschi (r)

TU Wien

Doch mit Eisen alleine ist dieser Effekt nicht wirklich zu erklären: Materialwissenschaftliche Berechnungen, die ein Forschungsteam um Prof. Alessandro Toschi und Prof. Karsten Held (TU Wien) und Prof. Giorgio Sangiovanni (Universität Würzburg) nun in „Nature Communications“ veröffentlichten, zeigen, dass die Theorie des Geo-Dynamoeffekts modifiziert werden muss. Entscheidend ist nämlich, dass der Erdkern auch bis zu 20% aus Nickel besteht – ein Metall, das sich unter den extremen Bedingungen im Erdkern anders verhält als das Eisen.

Große Hitze, extremer Druck

Der Erdkern ist ähnlich groß wie der Mond und so heiß wie die Oberfläche der Sonne. Es herrscht ein Druck von mehreren hundert Gigapascal – das entspricht dem Druck, den man ausüben würde, wenn man mehrere Eisenbahnlokomotiven auf einem Quadratmillimeter balancieren könnte.

„Unter diesen extremen Bedingungen verhalten sich manche Materialien ganz anders als wir es gewohnt sind“, sagt Karsten Held. „Die Bedingungen im Experiment nachzustellen ist kaum möglich, aber mit aufwändigen Computersimulationen können wir das Verhalten von Metallen im Erdkern quantenphysikalisch berechnen.“

Die Hitze des Erdkerns muss irgendwie entweichen. Heißes Material steigt in höhere Schichten auf, es entstehen Konvektionsströme. Gleichzeitig treten durch die Erdrotation starke Korioliskräfte auf, insgesamt entstehen so im Erdinneren komplizierte spiralförmige Strömungen. „Wenn in einem solchen Strömungs-System elektrischer Strom zu fließen beginnt, kann dieser ein magnetisches Feld erzeugen, das wiederum den Stromfluss verstärkt, und so weiter – bis ein kräftiges Magnetfeld entstanden ist, das wir an der Erdoberfläche messen können“, erklärt Alessandro Toschi.

Wärmeleitung unter Druck

Doch nach bisherigem Wissen war eigentlich nicht zu erklären, warum es überhaupt zu den Konvektionsströmen kommen sollte. Eisen ist nämlich ein ziemlich guter Wärmeleiter, und bei hohem Druck wird die Wärmeleitfähigkeit von Eisen sogar noch besser. „Würde das Erdinnere nur aus Eisen bestehen, so könnten die frei beweglichen Elektronen im Eisen ganz alleine für den nötigen Wärmetransport sorgen, ohne dass dabei Konvektionsströme entstehen müssten“, sagt Karsten Held. „Dann gäbe es allerdings auch kein Erdmagnetfeld.“

Allerdings enthält der Erdkern auch bis zu 20% Nickel. Bisher hielt man das nicht für bedeutend, doch wie nun gezeigt wurde, spielt der Nickel-Anteil eine ganz entscheidende Rolle. „Nickel verhält sich unter Druck anders als Eisen“, sagt Alessandro Toschi. „Bei hohem Druck streuen die Elektronen im Nickel deutlich häufiger als im Eisen, daher ist die Wärmeleitfähigkeit von Nickel, aber auch des Erdkerns insgesamt, deutlich niedriger als bei einem Kern aus reinem Eisen.“ Aufgrund des Nickel-Anteils kann die Temperatur im Erdkern nicht mehr bloß durch die Bewegung von Elektronen abtransportiert werden und daher ist das Entstehen von Konvektionsströmungen unvermeidlich, die dann letztlich für das Erdmagnetfeld verantwortlich sind.

Um zu diesen Erkenntnissen zu gelangen, war es nötig, unterschiedliche Metallstrukturen am Computer zu simulieren und das Verhalten ihrer Elektronen zu berechnen. Die Vielteilchen-Rechnungen wurden von Andreas Hausoel (Universität Würzburg) durchgeführt, unter anderem auch am Vienna Scientific Cluster (VSC). „Gemeinsam mit unseren Kollegen von der Universität Würzburg untersuchten wir nicht nur Eisen und Nickel sondern auch Legierungen aus diesen beiden Materialien. Auch Störungen und Unregelmäßigkeiten in den Materialien mussten wir speziell berücksichtigen, das macht die Computersimulationen noch aufwändiger“, erklärt Karsten Held.

Diese fortschrittlichen Rechenmethoden sind nicht nur wichtig, um das Erdmagnetfeld besser zu verstehen, sie bieten auch neue Einblicke in die Streuung der Elektronen. Alessadro Toschi ist überzeugt: „In naher Zukunft wird die stetige Verbesserung dieser Algorithmen auch zu spannenden Anwendungen in der Chemie und Biologie, in der Industrie und Technik führen.“

Dieses im Rahmen einer langfristigen Kooperation zwischen der TU Wien und der Uni Würzburg durchgeführte Projekt wurde vom österreichischen FWF und der deutschen DFG im Rahmen der Forschergruppe FOR 1346 „Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials“ unterstützt.

Originalpublikation:
Sangiovanni et al., Local magnetic moments in iron and nickel at ambient and Earth's core conditions; Nature Communications, 2017. DOI: 10.1038/NCOMMS16062

Rückfragehinweise:
Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Prof. Alessandro Toschi
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8, 1040 Wien
T: +43-1-58801-13762
alessandro.toschi@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik