Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Entstehen von Ordnung

12.03.2015

Physiker des MPQ, der LMU sowie der FUB untersuchen wie schnell Ordnung in einem quantenmechanischen System entstehen kann.

Wenn Wasser gefriert, so ordnen sich die anfangs ungeordneten Wassermoleküle in einem mehr oder weniger regelmäßigen Eiskristall an; sie gehen bei diesem Phasenübergang aus einem ungeordneten in einen geordneteren Zustand über. Dabei ergibt sich sofort eine wichtige Frage: Wie lange dauert es, bis jedes Molekül seinen Platz gefunden hat?


Während die Atome im Anfangszustand (oben) auf einzelnen Gitterplätzen lokalisiert sind, bilden sich während des Phasenübergangs Korrelationen zwischen den Gitterplätzen aus.

Im flachen Gitter des Endzustands (unten) würden die Korrelationen nach einer unendlich langsamen Rampe das gesamte Gitter verbinden; aufgrund der endlichen Geschwindigkeit der experimentellen Rampe erreichen sie jedoch nur eine endliche Reichweite. (Grafik: Quantum Optics Group, LMU)

Die Antwort darauf spielt zum Beispiel in der Metallurgie eine wichtige Rolle, da die Größe der entstehenden Domänen mit darüber entscheidet, wie flexibel oder brüchig Stahl ist. Während diese Frage in klassischen Systemen bereits umfassend untersucht wurde, so ist sie in der Quantenmechanik noch vergleichsweise Neuland.

Mit Hilfe von ultrakalten Atomen in optischen Gittern ist es einem Forscherteam um Ulrich Schneider und Immanuel Bloch am Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians-Universität München, der Freien Universität Berlin, sowie des Consejo Superior de Investigaciones Científicas in Madrid nun gelungen, diese Situation im Labor nachzustellen und unter präzisen Bedingungen auszumessen. Ihre Erkenntnisse ermöglichen es, quantitative Vorhersagen zu Vorgängen in physikalischen Systemen zu treffen und wurden am 9. März 2015 in den „Proceedings of the National Academy of Sciences“ publiziert.

Die entscheidende Frage bei allen Phasenübergängen ist: Wie kommt das System eigentlich von einer Phase in eine andere? Insbesondere für Quantensysteme gibt es darauf keine einfache Antwort, da die Dynamik typischerweise deutlich komplexer ist als die Phasen selbst. Dazu kommt, dass die Reaktionszeit des Systems in der Nähe des Phasenübergangs immer länger wird, das System also immer „zäher“ reagiert, da es sich immer stärker umordnen muss.

Wie schnell diese Umordnung stattfinden kann, also wie schnell sich die dazu nötigen Korrelationen zwischen den Teilchen bilden und ausbreiten können, ist ein wichtiges Problem der Physik. Anschaulich kann man sich dieses System ähnlich einer Ansammlung vieler kleiner Pfeile vorstellen, die am Anfang ungeordnet sind, also in alle möglichen Richtungen weisen. Jenseits des Phasenübergangs wollen die Pfeile dann jeweils die gleiche Richtung wie ihre Nachbarn haben. Damit möchten sie ultimativ alle in die gleiche Richtung zeigen, aber in welche? Da im Prinzip alle Richtungen gleichwertig sind, so müssen sie sich die Atome auf eine Richtung einigen. Wie schnell kann das passieren?

Dieses Problem, das theoretische arbeitende Physiker schon seit langem beschäftigt, wurde in dieser neuen Arbeit unter extrem genau kontrollierten Bedingungen im Labor nachgestellt und experimentell vermessen. Basis sind hier künstliche Vielteilchensysteme, in denen tausende von ultrakalten Atomen in einem Lichtgitter anfangs auf ihrem Platz fest gehalten werden. In diesem Mott-Isolator gibt es also keine Korrelationen zwischen Gitterplätzen.

Anschließend wird dann die Kopplung zwischen benachbarten Gitterplätzen kontrolliert erhöht, bis ein Quantenphasenübergang in einen Zustand stattfindet, in dem die Teilchen frei durch das Gitter fließen. Diese Supraflüssigkeit ist im Gleichgewicht hochgradig geordnet: die Teilchenwellen schwingen im Gleichtakt (sind also kohärent), und ihre Eigenschaften sind über weite Entfernungen stark korreliert. Die Dynamik des Übergangs vom Mott-Isolator in die Supraflüssigkeit haben die Münchner Physiker jetzt erstmals quantitativ vermessen.

Sie konnten im Experiment im Detail nachverfolgen, wie sich die langreichweitigen Korrelationen ausbreiten, und die Messergebnisse mit theoretischen Modellen vergleichen. Diesen Untersuchungen zufolge sind die bislang verwendeten Modelle für real existierende Systeme zu einfach und müssen um (noch unbekannte) Beiträge ergänzt werden.

Zusätzlich konnten die experimentellen Resultate für eindimensionale Systeme - also eine Kette von Gitterplätzen - mit numerischen Rechnungen auf Supercomputern verglichen werden, die von dem Team um Jens Eisert an der Freien Universität Berlin durchgeführt wurden. Dieser Vergleich ermöglichte dabei einen unabhängigen Test des experimentellen Systems, welchen dieses mit Bravour bestanden hat. Das Experiment konnte dann für höherdimensionale Systeme (2D und 3D) wiederholt werden, in denen mit gegenwärtigen Rechnern keine numerischen Simulationen möglich sind.

Die dabei gewonnenen experimentellen Resultate in höheren Dimensionen können nun verwendet werden, um neue theoretische Ansätze zu testen und damit unser Verständnis der Dynamik von Vielteilchensystemen fundamental voranzubringen. Damit wurde in dieser Arbeit nicht nur ein physikalisches Problem neu beleuchtet, sondern gleichzeitig ein Paradigma neu ausgelotet: Das der Quantensimulation, in dem komplexe Quantensysteme im Labor unter sehr präzisen Bedingungen nachgestellt werden, um so ihr Verhalten extrem genau nachmessen zu können und damit die Basis für ein neues, tieferes Verständnis zu liefern. [U.S./O.M.]


Originalveröffentlichung:

Simon Braun, Mathis Friesdorf, Sean S. Hodgman, Michael Schreiber, Jens Philipp Ronzheimer, Arnau Riera, Marco del Rey, Immanuel Bloch, Jens Eisert, and Ulrich Schneider
Emergence of coherence and the dynamics of quantum phase transitions
Proceedings of the National Academy of Sciences, 9. März 2015

Kontakt:

Dr. Ulrich Schneider
LMU München, Fakultät für Physik
Schellingstr. 4, 80799 München
Telefon: +49 (0)89 / 2180 -6129
E-Mail: ulrich.schneider@physik.uni-münchen.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Berichte zu: Dynamik LMU Mott-Isolator Physiker Quantenoptik Supraflüssigkeit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI mit neuesten VR-Technologien auf der NAB in Las Vegas

24.04.2017 | Messenachrichten

Leichtbau serientauglich machen

24.04.2017 | Maschinenbau

Daten vom Kühlgerät in die Cloud

24.04.2017 | HANNOVER MESSE