Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

«Chury» ist viel jünger als angenommen

09.11.2016

Komet «Chury» hat seine entenförmige Gestalt nicht bei der Entstehung unseres Sonnensystems vor 4,5 Milliarden Jahren erhalten wie bisher gedacht. Dies schliessen Astrophysiker der Universität Bern aus Computersimulationen. Sie zeigen, dass der Komet in seiner jetzigen Form kaum mehr als eine Milliarde Jahre ist. Trotzdem enthält er Material aus der Urzeit.

Aufgrund der Daten der Raumsonde Rosetta nahmen Forschende bisher an, dass der Komet 67P/Churyumov-Gerasimenko aus der Anfangsphase unseres Sonnensystems stammt. Seine eigenartige, entenförmige Struktur wäre demnach beim sanften Zusammenstoss zweier Objekte vor etwa 4,5 Milliarden Jahren entstanden.


«Chury» mit seiner zweiteiligen Struktur und dem zerbrechlichen «Hals» dazwischen.

© ESA/Rosetta/NAVCAM

Nun kommen Martin Jutzi und Willy Benz vom NCCR PlanetS und dem Center for Space and Habitability (CSH) der Universität Bern zusammen mit Kollegen zu einem anderen Schluss: «Es ist unwahrscheinlich, dass ein Körper wie ‹Chury› eine so lange Zeit unbeschadet überstanden hat; das zeigen unsere Computersimulationen», erklärt Astrophysiker Martin Jutzi das Resultat zweier Arbeiten, die in der Fachzeitschrift «Astronomy & Astrophysics» veröffentlicht werden.

Stimmen die gegenwärtigen Modellvorstellungen von der Entstehung unseres Sonnensystems, so folgte auf eine ruhige Anfangsphase ein Zeitraum, in dem grosse Körper das System zu höheren Geschwindigkeiten und heftigeren Kollisionen anregten. In einer ersten Studie berechneten die Wissenschaftler, wieviel Energie es brauchen würde, um eine Struktur wie diejenige von «Chury» bei einem Zusammenstoss zu zerstören.

Schwachstelle ist die Verbindung der beiden Teile – der Hals zwischen Kopf und Körper. «Wir haben herausgefunden, dass diese Struktur einfach kaputt gehen kann, sogar bei Einschlägen mit geringer Aufprallenergie», fasst Martin Jutzi zusammen. Willy Benz vergleicht den Kometenhals mit dem Stiel eines Glases: «Eine Abwaschmaschine muss sehr sanft reinigen, damit der Stiel nicht bricht», meint der Astrophysiker. «So pfleglich ging es im Sonnensystem offenbar nicht zu.»

Die neue Studie zeigt, dass Kometen wie «Chury» im Laufe der Zeit eine wesentliche Anzahl Zusammenstösse erlebten, deren Energie jeweils ausgereicht hätte, um ihre zweiteilige Struktur zu zerstören. Die Struktur stammt also nicht aus der Urzeit, sondern hat sich durch Kollisionen über Jahrmilliarden entwickelt. «Die heutige Kometenform ist demnach das Resultat des letzten grösseren Einschlags, der vermutlich innerhalb der letzten Milliarde Jahren stattgefunden hat», sagt Martin Jutzi.

Der entenförmige «Chury» ist also viel jünger als bisher angenommen. Die einzige Alternative wäre, dass das gegenwärtige Standardmodell des frühen Sonnensystems nicht korrekt ist, und damals sehr viel weniger kleine Objekte vorhanden waren als bisher angenommen. Dann hätte es weniger Kollisionen gegeben und «Chury» hätte eine Möglichkeit gehabt zu überleben. «Wir gehen zurzeit aber davon aus, dass Chury tatsächlich aus vielen Kollisionen hervorgegangen ist und das Standardmodell nicht umgeschrieben werden muss», sagt Jutzi.

Neue Form, gleicher Inhalt

Doch wie könnte der Zusammenstoss erfolgt sein, der «Chury» die jetzige Form gab? Dies untersuchten Jutzi und Benz in einer zweiten Arbeit. In ihren Computermodellen liessen sie Brocken mit einem Durchmesser von 200 bis 400 Metern auf einen etwa 5 Kilometer grossen, rotierenden Körper von der Form eines Rugbyballes prallen (siehe Animation).

Die Einschlaggeschwindigkeit lag im Bereich von 200 bis 300 Meter pro Sekunde, also deutlich über der Fluchtgeschwindigkeit von Objekten dieser Grösse (rund 1 Meter pro Sekunde). Die involvierte Energie ist aber noch weit unter derjenigen eines katastrophalen Aufpralls, bei dem ein grosser Teil des Körpers «pulverisiert» wird. Resultat: Die Gesamtmasse wurde vorerst in zwei Teile auseinandergerissen, die Stunden später aufgrund der Wirkung der Schwerkraft zu einer Struktur mit zwei Teilen verschmolz – ein Gebilde wie «Chury».

Widerspricht dieses Forschungsresultat der bisherigen Erkenntnis, dass Kometen aus ursprünglichem Material bestehen, das mindestens so alt wie unser Sonnensystem ist? «Nein», meinen die Forscher. Denn ihre Computersimulationen zeigen, dass die relativ kleine Einschlagenergie den Kometen weder global erhitzt noch zusammendrückt. Das Material ist weiterhin porös und die darin seit Beginn enthaltenen flüchtigen Stoffe bleiben erhalten – Eigenschaften, welche die Raumsonde Rosetta im Fall von «Chury» eindrücklich messen konnte.

«Bisher hat man angenommen, dass die Kometen eine Art ursprüngliche Bausteine sind – ähnlich wie Lego», erklärt Willy Benz: «Unsere Arbeit zeigt, dass die Legosteine nicht mehr ihre ursprüngliche Form haben, aber das Plastik, aus dem sie bestehen, ist immer noch das Gleiche wie am Anfang.»

Angaben zu den Publikationen:

M. Jutzi et al.: How primordial ist the structure of comet 67P/c-G?, Astronomy & Astrophysics, 9. November 2016, http://arxiv.org/abs/1611.02604

M. Jutzi, W. Benz: Formation of bi-lobed shapes by sub-catastrophic collisions – A late originin of comet 67P/C-G’s structure, Astronomy & Astrophysics, 9. November 2016, https://arxiv.org/abs/1611.02615

Animation:

Die Animation zeigt, wie Komet Churys Form entstanden sein könnte. Die drei Szenarios haben etwas unterschiedliche Anfangsbedingungen. (Animation M. Jutzi/W. Benz, Universität Bern)
http://tinyurl.com/ChuryAnimation

Weitere Informationen:

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2016/medie...

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics