Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker stellen neuartiges Gas aus Licht her

31.05.2010
Physiker der Universität Bonn haben eine Art Gas aus Lichtteilchen hergestellt, das seine Farbe mit der Temperatur ändert, ohne dass dabei die Lichtmenge variiert.

Sie berichten in der kommenden Ausgabe der Zeitschrift "Nature Physics" über ihre Entdeckung (DOI: 10.1038/NPHYS1680). Das Funktionsprinzip lässt sich eventuell nutzen, um Sonnenlicht unabhängig vom Sonnenstand auf einen festen Punkt zu bündeln. So ließe sich die Ausbeute von Solarzellen erhöhen, ohne dass man sie mittels Motoren zur Sonne ausrichten müsste.

Die Forscher nutzten in ihrem Experiment gewölbte Spiegel mit extrem hohem Reflexionsvermögen. Sie richteten die Spiegelflächen so aus, dass sie zueinander zeigten. So konnten sie einen Lichtstrahl ständig zwischen ihnen hin- und her werfen.

In dem Zwischenraum zwischen Reflexionsflächen befand sich ein Farbstoff. Auf ihrer Reise kollidierten die eingesperrten Photonen immer wieder mit den Farbstoff-Molekülen. "Unter diesen Umständen konnten wir ein neuartiges Photonengas mit ungewöhnlichen Eigenschaften erzeugen", erklärt der Bonner Laserphysiker Professor Dr. Martin Weitz.

Die Farbe dieses Gases ändert sich mit der Umgebungstemperatur. Ähnliches kennt man vom Wolfram-Wendel einer Glühbirne: Bei hohen Temperaturen leuchtet die Birne weiß. Reduziert man jedoch mit einem Dimmer die Stromstärke und senkt dadurch die Temperatur, verändert sich die Farbe ins Rötliche. Gleichzeitig wird die Birne dunkler. Bei noch niedrigeren Temperaturen leuchtet sie dann plötzlich gar nicht mehr.

"Bei unserem Experiment ist das anders", erklärt Weitz: "Die Lichtintensität - also die Zahl der Photonen - bleibt immer gleich. Das ist ähnlich, als würden sie eine Glas Luft in den Kühlschrank stellen: Die Luftmoleküle werden zwar ‚kühler' und damit langsamer, ihre Menge bleibt aber konstant. In ähnlicher Weise kühlen wir die Lichtteilchen."

"Lichtkonzentrat" soll Ausbeute von Solarzellen erhöhen

Die von den Bonner Forschern entwickelte Methode lässt sich eventuell nutzen, um Sonnenlicht wie mit einem Brennglas zu konzentrieren. "Stellen Sie sich ein mit Licht gefülltes Sektglas vor, das nach unten hin spitz zuläuft", sagt Weitz. "Je kälter das Licht ist, desto weiter unten kommt es in diesem Sektglas zu liegen und desto konzentrierter wird es." Dieser Effekt ist unabhängig von der Richtung, aus der das Licht einfällt: Die Konzentration erfolgt immer am selben Ort. Eine Linse hingegen muss ständig nach dem Stand der Sonne ausgerichtet werden, damit ihr Brennpunkt an derselben Stelle bleibt.

Indem man das Licht kühlt und so konzentriert, könnte man also eventuell die Ausbeute von Sonnenkollektoren und Solarzellen erhöhen, ohne dazu eine komplizierte "Nachführmechanik" zu benötigen. "Außerdem funktioniert unsere Methode auch bei diffusem Licht, also etwa bei bewölktem Himmel", betont Weitz.

Kühlt man sehr viele Photonen stark herunter, kann man die Lichtteilchen eventuell sogar so stark konzentrieren, dass sie eine Art Klumpen bilden. Physiker sprechen von einem Bose-Einstein-Kondensat. Mit diesem "Photonen-Klumpen" ließen sich möglicherweise UV-Lichtquellen konstruieren, die ähnliche Eigenschaften wie Laserlicht aufweisen. Derartige UV-Quellen würden sich beispielsweise zur Herstellung von Computerchips mit besonders feinen Strukturen eignen.

Kontakt:
Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-4837 oder -4836
E-Mail: Martin.Weitz@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise