Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker nutzen einzelnes Atom als Lichtdimmer

05.10.2010
Physiker der Universität Bonn haben eine Art „Lichtdimmer“ entwickelt, der aus einem einzigen Atom besteht. Bedient wird er über einen Laserstrahl. Möglicherweise kommen ähnliche Bauelemente künftig in der Quantenkommunikation zum Einsatz.

Die Forscher berichten in der kommenden Ausgabe des Fachblatts „Physical Review Letters“ über ihre Ergebnisse (http://arxiv.org/abs/1004.5348).

Eine der großen Attraktionen in Deutschlands Vorzeige-Schnellzug, dem ICE-3, ist die Glaswand zwischen Führerstand und Lounge: Sie ist normalerweise klar. Ein Knopfdruck reicht jedoch, und sie verwandelt sich – Abrakadabra – von jetzt auf gleich in undurchsichtiges Milchglas.

Quantenphysiker der Universität Bonn beherrschen einen ähnlichen Zaubertrick. Mit einem Unterschied: Sie arbeiten mit einzelnen Caesium-Atomen, die sie auf Wunsch „transparent“ oder mehr oder weniger „undurchsichtig“ machen.

Für ihr nun publiziertes Experiment nutzten die Forscher um Professor Dr. Dieter Meschede gewölbte Spiegel mit extrem hohem Reflexionsvermögen. Sie richteten die Spiegelflächen so aus, dass sie zueinander zeigten. Ein Lichtstrahl kann so viele hunderttausend Mal zwischen den Spiegeln hin- und hergeworfen werden.

In diesem „Lichtkäfig“ platzierten sie nun ein einzelnes Caesium-Atom. Mit einem von der Seite eingestrahlten Steuerlaser veränderten sie dann ganz gezielt die Eigenschaften dieses Atoms. So konnten sie beispielsweise erreichen, dass es das Licht im Käfig passieren ließ, es abschwächte oder gar ganz abblockte – ähnlich wie ein Dimmer.

Das man Caesium als reinen An- und Ausschalter nutzen kann, haben die Bonner Forscher bereits vor einem Jahr zeigen können (siehe auch www.uni-bonn.de/Pressemitteilungen/280-2009). „Jetzt können wir aber die Eigenschaften des Atoms mit unserem Steuerlaser genau so verändern, wie wir es wollen“, sagt Tobias Kampschulte vom Bonner Institut für Angewandte Physik.

Schöner Effekt: das Caesium wird kälter

Besonders freuen sich die Forscher über einen unerwarteten Effekt ihrer Versuchsanordnung: Caesium-Atome sind bei Zimmertemperatur recht quirlige Gesellen. Um sie gezielt manipulieren zu können, kühlen die Forscher die Atome daher ab, bis sie sich kaum noch bewegen. Dann greifen sie sie mit einer Art Pinzette aus Licht und halten sie am gewünschten Ort fest. Doch auch gekühlt sind die Atome noch so zappelig, dass sie sich im Schnitt nur eine knappe Sekunde festhalten lassen. Dann nehmen sie Reißaus.

Im optischen Käfig sitzt das Caesium unter dem Einfluss des Steuerlasers jedoch viel länger still – durchschnittlich 16 Sekunden. Damit bleibt den Physikern entsprechend mehr Zeit für ihre Experimente. „Unsere Versuchsanordnung scheint die Caesium-Atome weiter zu kühlen und damit länger festzuhalten“, erklärt Kampschulte. „Warum das so ist, wissen wir allerdings noch nicht genau.“

Kontakt:
Tobias Kampschulte
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-3128
E-Mail: kampschulte@iap.uni-bonn.de
Dr. Artur Widera
Telefon: 0228/73-3471
E-Mail: widera@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de
http://arxiv.org/abs/1004.5348

Weitere Berichte zu: Caesium Caesium-Atom Käfig Lichtdimmer Physik Steuerlaser Versuchsanordnung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie