Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzschneller Schalter für Elektronenwellen

13.12.2016

Forscher der Universität Regensburg und der Scuola Normale Superiore di Pisa haben einen superschnellen Schalter für Elektronenwellen entwickelt, welcher es erlauben könnte, künftige Elektronik um ein Vielfaches zu beschleunigen.

Der charakteristische Glanz von Metallen wird durch Elektronen hervorgerufen, die sich im Materialinneren frei bewegen können und einfallendes Licht reflektieren. Ähnlich Wasserwellen auf einem Teich können auch auf der Oberfläche dieses Elektronensees Wellen entstehen - sogenannte Oberflächenplasmonen.


Wellen im Plasma des schwarzen Phosphors (unten) breiten sich ausgehend vom den Punkt ihrer Anregung aus und versetzen auch das umgebende Siliziumdioxid (oben) in Schwingung.

Foto: Fabian Mooshammer

Anstatt eines Steins, den man ins Wasser wirft, benutzt man im Labor Licht, um Oberflächenplasmonen zu erzeugen. Wird Licht auf eine scharfe Metallspitze von der Größe weniger Nanometer gebündelt, so breiten sich ausgehend von dieser Spitze winzige kreisförmige Oberflächenwellen aus. Ein Nanometer ist hierbei nur etwa zehnmal so groß wie der Durchmesser eines Atoms.

Diese Miniaturwellen könnten in künftigen kompakten elektronischen Bauteilen zum Einsatz kommen, um digitale Information blitzschnell zu transportieren. Allerdings gab es bisher keine Möglichkeit, solche Oberflächenwellen ultraschnell ein- und auszuschalten. In der konventionellen Elektronik wird eine analoge Aufgabe von sogenannten Transistoren wahrgenommen.

Einem Forscherteam um Professor Rupert Huber, Lehrstuhl für Experimentelle und Angewandte Physik der Universität Regensburg, ist es in Kooperation mit Kollegen aus Pisa nun erstmals gelungen, Wellen im Elektronensee tatsächlich ultraschnell ein- und auszuschalten und damit eine wichtige Grundlage für künftige Plasmaelektronik zu legen.

Die Physiker verwendeten hierfür allerdings kein Metall, auf welchem Elektronenwellen stets präsent sind. Vielmehr kam eine ausgeklügelte Schichtstruktur basierend auf einem Halbleiter zum Einsatz. Halbleiter wie Silizium sind die Materialien, aus denen Computerchips bestehen.

Bei dem hier verwendeten Halbleiter handelt es sich um ein besonders modernes Material: sogenannten schwarzen Phosphor. Durch Einstrahlen eines intensiven Lichtblitzes können darin frei bewegliche Elektronen erst erzeugt werden. Ohne diese sind keine Oberflächenwellen vorhanden und die Struktur ist „ausgeschaltet“. Sobald allerdings der erste Laserimpuls die frei beweglichen Elektronen erzeugt hat, können mit einem darauffolgenden Impuls die Oberflächenplasmonen von der Spitze aus losgeschickt werden.

Um zu testen, wie schnell dieser Schaltvorgang werden kann, aktivierte das Regensburger Team um Prof. Dr. Rupert Huber Oberflächenplasmonen mit ultrakurzen Lichtblitzen mit Zeitdauern von nur wenigen Femtosekunden. Eine Femtosekunde ist die unvorstellbar kurze Zeitspanne eines millionsten Teils einer Milliardstel Sekunde, also 0, 000 000 000 000 001 Sekunden.

Mit einem weltweit einzigartigen superschnellen und hochauflösenden Mikroskop verfolgten die Forscher anschließend direkt in extremer Zeitlupe, wie sich die Plasmonwelle ausbreitet. Dabei war klar zu erkennen, dass die Schaltzeiten auf der Femtosekunden-Zeitskala lagen und somit um viele Größenordnungen schneller als die schnellsten existierenden Transistoren waren. Eine angenehme Überraschung war, dass die Wellenlänge der Oberflächenwellen fast unabhängig von der Leistung des einschaltenden Lasers ist.

Diese Ergebnisse sind äußerst ermutigend für künftige ultraschnelle Elektronik auf Basis von Oberflächenplasmonen. Im nächsten Schritt werden die Regensburger Forscher erste funktionsfähige plasmonische Bauelemente testen – ab sofort auf der Femtosekunden-Zeitskala.

Das neuartige Prinzip wird in der aktuellen Ausgabe der Fachzeitschrift „Nature Nanotechnology“ vorgestellt (DOI: 10.1038/NNANO.2016.261)

Ansprechpartner für Medienvertreter:
Prof. Dr. Rupert Huber
Universität Regensburg
Lehrstuhl für Experimentelle und Angewandte Physik
Telefon: 0941 943-2070
E-Mail: Rupert.Huber@ur.de

Claudia Kulke | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie