Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzschnell durch den Tunnel

05.12.2008
Benötigen Elektronen eine bestimmte Zeit, um einen Potentialberg zu durchtunneln? Diese lange Zeit strittige Frage hat eine internationale Forscherkooperation mithilfe einer an der Goethe-Uni entwickelten Technik nun eindeutig mit "nein" beantwortet.

Elektronen im Mikrokosmos gelingt, wovon Radfahrer nur träumen: sie können Berge passieren, obwohl sie nicht genug Energie für deren Überquerung haben. Der quantenmechanische Tunneleffekt erlaubt es ihnen, durch Potentialberge hindurch zu tunneln. Uneinig sind sich die Physiker jedoch seit 80 Jahren darüber, ob die Quantenteilchen eine gewisse Zeit im Tunnel verbringen oder augenblicklich auf der anderen Seite des Berges wieder erscheinen.

Unklar war auch, welche Messgrößen zur Entscheidung dieser Frage überprüft werden müssten. Einem internationalen Forscherteam ist es jetzt Dank einer an der Goethe-Universität entwickelten Methode gelungen, der Frage nach der Tunnelzeit eine experimentell realisierbare Bedeutung zu geben und das Rätsel zu lösen: Das Teilchen erscheint ohne Zeitverzögerung, wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Science" berichten.

Der Radfahrer war in diesem Fall ein Elektron in einem Helium-Atom, dem sich für ganz kurze Zeit ein Potentialberg in Form eines Laserfelds in den Weg stellt. Durch den sich kurzzeitig auftuenden Tunnel kann das Elektron aus dem Atom entkommen. Hat man eine hinreichend schnelle Stoppuhr, kann man messen, wann es am Tunnelausgang erscheint. Die Forschergruppe unter der Leitung von Prof. Ursula Keller, Eidgenössische Technische Hochschule (ETH) Zürich, wählte dazu einen raffinierten experimentellen Aufbau: Sie ließ das Laserfeld, das auch den Potentialberg erzeugt, um das Helium-Atom kreisen. Passiert ein Elektron den Tunnel, wird es, je nach dem Zeitpunkt, an dem es am Ausgang ankommt, in unterschiedliche Richtungen geschleudert. "Der Effekt ist ähnlich wie bei einem starken Wind, der das Teilchen erfasst, sobald es den Schutz des Tunnels verlässt", erklärt Doktorandin Petrissa Eckle von der ETH. Da man weiß, zu welchem Zeitpunkt der Tunnel sich auftat und wie schnell er rotiert, braucht man nur noch die präzise Position des Elektrons, um zu berechnen, wie lang es im Tunnel gewesen ist.

Die Position und damit die Ablenkrichtung der Elektronen bestimmte die Forscherin mithilfe der in Frankfurt entwickelten COLTRIMS-Technik. Ursprünglich war der Versuch als Demonstationsexperiment für eine superschnelle Uhr geplant: Das schnelle Uhrwerk ist das Laserfeld des verwendetem Kurzeitlasers; der Zeiger, der in einer Sekunde 4 mal 10 hoch 14 Umdrehungen (eine Zahl mit 14 Nullen) macht, wird durch die Elektronen realisiert. "Dieses Konzept erlaubt eine Zeitmessung von weniger als 34 Attosekunden Genauigkeit. Diese unvorstellbar kurze Zeit verhält sich zu einer Sekunde so wie eine Sekunde zum Zeitalter des Universums", sagt Prof. Reinhard Dörner von der Goethe-Universität, der in dem Team mitarbeitete, "In dieser Zeit kommt auch ein Elektron nicht weit: es kann nicht einmal die Hälfte des Atom-Durchmessers durchqueren.

Die Idee, mit dieser hochpräzisen Stoppuhr die alte Frage der Tunnelzeit zu klären, kam Petrissa Eckle von der ETH im Verlauf ihrer Doktorarbeit. Dank ihres Experiments kann mit einer Genauigkeit von 34 Attosekunden ausgeschlossen werden, dass das Elektron eine bestimmte Zeit zum Durchqueren des Tunnels benötigt. Da diese Obergrenze nur ein Zehntel des Wertes beträgt, der theoretisch für eine mögliche Tunnelzeit abgeschätzt wurde, sind die meisten Physiker mit der gefunden Antwort zufrieden. Dem Alltagsverständnis läufst sie jedoch völlig zuwider: Denn offenbar können Elektronen in demselben Augenblick, in dem sie am Tunneleingang verschwinden, am Tunnelausgang schon wieder auftauchen.

Literaturangabe:

Science 5 December 2008; Vol. 322. no. 5907, pp. 1525 - 1529; DOI: 10.1126/science.1163439

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Reidberg, Tel.: (069)-798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen