Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzschnell durch den Tunnel

05.12.2008
Benötigen Elektronen eine bestimmte Zeit, um einen Potentialberg zu durchtunneln? Diese lange Zeit strittige Frage hat eine internationale Forscherkooperation mithilfe einer an der Goethe-Uni entwickelten Technik nun eindeutig mit "nein" beantwortet.

Elektronen im Mikrokosmos gelingt, wovon Radfahrer nur träumen: sie können Berge passieren, obwohl sie nicht genug Energie für deren Überquerung haben. Der quantenmechanische Tunneleffekt erlaubt es ihnen, durch Potentialberge hindurch zu tunneln. Uneinig sind sich die Physiker jedoch seit 80 Jahren darüber, ob die Quantenteilchen eine gewisse Zeit im Tunnel verbringen oder augenblicklich auf der anderen Seite des Berges wieder erscheinen.

Unklar war auch, welche Messgrößen zur Entscheidung dieser Frage überprüft werden müssten. Einem internationalen Forscherteam ist es jetzt Dank einer an der Goethe-Universität entwickelten Methode gelungen, der Frage nach der Tunnelzeit eine experimentell realisierbare Bedeutung zu geben und das Rätsel zu lösen: Das Teilchen erscheint ohne Zeitverzögerung, wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Science" berichten.

Der Radfahrer war in diesem Fall ein Elektron in einem Helium-Atom, dem sich für ganz kurze Zeit ein Potentialberg in Form eines Laserfelds in den Weg stellt. Durch den sich kurzzeitig auftuenden Tunnel kann das Elektron aus dem Atom entkommen. Hat man eine hinreichend schnelle Stoppuhr, kann man messen, wann es am Tunnelausgang erscheint. Die Forschergruppe unter der Leitung von Prof. Ursula Keller, Eidgenössische Technische Hochschule (ETH) Zürich, wählte dazu einen raffinierten experimentellen Aufbau: Sie ließ das Laserfeld, das auch den Potentialberg erzeugt, um das Helium-Atom kreisen. Passiert ein Elektron den Tunnel, wird es, je nach dem Zeitpunkt, an dem es am Ausgang ankommt, in unterschiedliche Richtungen geschleudert. "Der Effekt ist ähnlich wie bei einem starken Wind, der das Teilchen erfasst, sobald es den Schutz des Tunnels verlässt", erklärt Doktorandin Petrissa Eckle von der ETH. Da man weiß, zu welchem Zeitpunkt der Tunnel sich auftat und wie schnell er rotiert, braucht man nur noch die präzise Position des Elektrons, um zu berechnen, wie lang es im Tunnel gewesen ist.

Die Position und damit die Ablenkrichtung der Elektronen bestimmte die Forscherin mithilfe der in Frankfurt entwickelten COLTRIMS-Technik. Ursprünglich war der Versuch als Demonstationsexperiment für eine superschnelle Uhr geplant: Das schnelle Uhrwerk ist das Laserfeld des verwendetem Kurzeitlasers; der Zeiger, der in einer Sekunde 4 mal 10 hoch 14 Umdrehungen (eine Zahl mit 14 Nullen) macht, wird durch die Elektronen realisiert. "Dieses Konzept erlaubt eine Zeitmessung von weniger als 34 Attosekunden Genauigkeit. Diese unvorstellbar kurze Zeit verhält sich zu einer Sekunde so wie eine Sekunde zum Zeitalter des Universums", sagt Prof. Reinhard Dörner von der Goethe-Universität, der in dem Team mitarbeitete, "In dieser Zeit kommt auch ein Elektron nicht weit: es kann nicht einmal die Hälfte des Atom-Durchmessers durchqueren.

Die Idee, mit dieser hochpräzisen Stoppuhr die alte Frage der Tunnelzeit zu klären, kam Petrissa Eckle von der ETH im Verlauf ihrer Doktorarbeit. Dank ihres Experiments kann mit einer Genauigkeit von 34 Attosekunden ausgeschlossen werden, dass das Elektron eine bestimmte Zeit zum Durchqueren des Tunnels benötigt. Da diese Obergrenze nur ein Zehntel des Wertes beträgt, der theoretisch für eine mögliche Tunnelzeit abgeschätzt wurde, sind die meisten Physiker mit der gefunden Antwort zufrieden. Dem Alltagsverständnis läufst sie jedoch völlig zuwider: Denn offenbar können Elektronen in demselben Augenblick, in dem sie am Tunneleingang verschwinden, am Tunnelausgang schon wieder auftauchen.

Literaturangabe:

Science 5 December 2008; Vol. 322. no. 5907, pp. 1525 - 1529; DOI: 10.1126/science.1163439

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Reidberg, Tel.: (069)-798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie