Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blitzschnell durch den Tunnel

05.12.2008
Benötigen Elektronen eine bestimmte Zeit, um einen Potentialberg zu durchtunneln? Diese lange Zeit strittige Frage hat eine internationale Forscherkooperation mithilfe einer an der Goethe-Uni entwickelten Technik nun eindeutig mit "nein" beantwortet.

Elektronen im Mikrokosmos gelingt, wovon Radfahrer nur träumen: sie können Berge passieren, obwohl sie nicht genug Energie für deren Überquerung haben. Der quantenmechanische Tunneleffekt erlaubt es ihnen, durch Potentialberge hindurch zu tunneln. Uneinig sind sich die Physiker jedoch seit 80 Jahren darüber, ob die Quantenteilchen eine gewisse Zeit im Tunnel verbringen oder augenblicklich auf der anderen Seite des Berges wieder erscheinen.

Unklar war auch, welche Messgrößen zur Entscheidung dieser Frage überprüft werden müssten. Einem internationalen Forscherteam ist es jetzt Dank einer an der Goethe-Universität entwickelten Methode gelungen, der Frage nach der Tunnelzeit eine experimentell realisierbare Bedeutung zu geben und das Rätsel zu lösen: Das Teilchen erscheint ohne Zeitverzögerung, wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Science" berichten.

Der Radfahrer war in diesem Fall ein Elektron in einem Helium-Atom, dem sich für ganz kurze Zeit ein Potentialberg in Form eines Laserfelds in den Weg stellt. Durch den sich kurzzeitig auftuenden Tunnel kann das Elektron aus dem Atom entkommen. Hat man eine hinreichend schnelle Stoppuhr, kann man messen, wann es am Tunnelausgang erscheint. Die Forschergruppe unter der Leitung von Prof. Ursula Keller, Eidgenössische Technische Hochschule (ETH) Zürich, wählte dazu einen raffinierten experimentellen Aufbau: Sie ließ das Laserfeld, das auch den Potentialberg erzeugt, um das Helium-Atom kreisen. Passiert ein Elektron den Tunnel, wird es, je nach dem Zeitpunkt, an dem es am Ausgang ankommt, in unterschiedliche Richtungen geschleudert. "Der Effekt ist ähnlich wie bei einem starken Wind, der das Teilchen erfasst, sobald es den Schutz des Tunnels verlässt", erklärt Doktorandin Petrissa Eckle von der ETH. Da man weiß, zu welchem Zeitpunkt der Tunnel sich auftat und wie schnell er rotiert, braucht man nur noch die präzise Position des Elektrons, um zu berechnen, wie lang es im Tunnel gewesen ist.

Die Position und damit die Ablenkrichtung der Elektronen bestimmte die Forscherin mithilfe der in Frankfurt entwickelten COLTRIMS-Technik. Ursprünglich war der Versuch als Demonstationsexperiment für eine superschnelle Uhr geplant: Das schnelle Uhrwerk ist das Laserfeld des verwendetem Kurzeitlasers; der Zeiger, der in einer Sekunde 4 mal 10 hoch 14 Umdrehungen (eine Zahl mit 14 Nullen) macht, wird durch die Elektronen realisiert. "Dieses Konzept erlaubt eine Zeitmessung von weniger als 34 Attosekunden Genauigkeit. Diese unvorstellbar kurze Zeit verhält sich zu einer Sekunde so wie eine Sekunde zum Zeitalter des Universums", sagt Prof. Reinhard Dörner von der Goethe-Universität, der in dem Team mitarbeitete, "In dieser Zeit kommt auch ein Elektron nicht weit: es kann nicht einmal die Hälfte des Atom-Durchmessers durchqueren.

Die Idee, mit dieser hochpräzisen Stoppuhr die alte Frage der Tunnelzeit zu klären, kam Petrissa Eckle von der ETH im Verlauf ihrer Doktorarbeit. Dank ihres Experiments kann mit einer Genauigkeit von 34 Attosekunden ausgeschlossen werden, dass das Elektron eine bestimmte Zeit zum Durchqueren des Tunnels benötigt. Da diese Obergrenze nur ein Zehntel des Wertes beträgt, der theoretisch für eine mögliche Tunnelzeit abgeschätzt wurde, sind die meisten Physiker mit der gefunden Antwort zufrieden. Dem Alltagsverständnis läufst sie jedoch völlig zuwider: Denn offenbar können Elektronen in demselben Augenblick, in dem sie am Tunneleingang verschwinden, am Tunnelausgang schon wieder auftauchen.

Literaturangabe:

Science 5 December 2008; Vol. 322. no. 5907, pp. 1525 - 1529; DOI: 10.1126/science.1163439

Informationen: Prof. Reinhard Dörner, Institut für Kernphysik, Campus Reidberg, Tel.: (069)-798-47003, doerner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation
Telefon (069) 798 - 2 92 28, Telefax (069) 798 - 2 85 30,
E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie