Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biophysik - Entmischende Kollisionen

05.02.2016

Ein Mix verschiedener, aber gleich großer Teilchen kann sich wie von Zauberhand selbst entmischen – und zwar dann, wenn eine Teilchenart schneller ist als die andere.

Rüttelt man eine Mischung von unterschiedlich großen Nüssen, dann liegen nach kurzer Zeit die größten Nüsse ganz oben und die kleinsten ganz unten in der Schale. Diese spontane Entmischung von Teilchen unterschiedlicher Größe ist als Paranuss-Effekt bekannt.


Unterschiedlich große Nüsse können durch Rütteln sortiert werden. Ein ähnlicher Effekt funktioniert auch bei gleich großen Teilchen, wenn diese unterschiedlich aktiv sind.

Man findet dieses Phänomen bei allen granularen Systemen, wenn man sie schüttelt und so zufällige aktive Bewegungen der Teilchen erzeugt. Bei Computersimulationen entdeckten nun der LMU-Physiker Erwin Frey und sein Team zu ihrem Erstaunen, dass sich sogar gleich große Teilchen von selbst sortieren, wenn sie unterschiedlich stark ausgeprägte Zufallsbewegungen ausführen.

„Dieses Phänomen, das bisher noch niemand untersucht hatte, konnten wir nun mithilfe unserer Simulationen theoretisch erklären und zeigen, dass das Bewegungsverhalten der Teilchen dabei eine wichtige Rolle spielt“, sagt Frey. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Physical Review Letters.

In Wasser gelöste Teilchen verteilen sich normalerweise gleichmäßig in der Lösung, wobei ihre Diffusionskonstante – ein Maß für die Beweglichkeit der Teilchen – von der Temperatur abhängt. In Mischungen im thermischen Gleichgewicht haben gleich große Teilchen auch die gleiche Diffusionskonstante. „Uns interessierte, was passiert, wenn die Teilchen unterschiedliche Diffusionskonstanten haben. Dies ist nur möglich, wenn die Teilchen aktiv angetrieben werden“, sagt Simon Weber, der Erstautor der Studie.

„Wir haben deshalb ein System analysiert, in dem sich die Teilchen persistent bewegen, es findet also eine unregelmäßige, aber aktive Bewegung statt. Die sogenannte Persistenzlänge beschreibt dabei die Strecke, die ein Teilchen in eine Richtung zurücklegt, bevor es in eine andere Richtung abschwenkt.“

Die Simulationen der Wissenschaftler zeigten, dass sich eine Mischung aus schnellen (aktiven) und langsamen (passiven) Teilchen von selbst entmischt, wenn die Persistenzlängen der beteiligten aktiven Teilchen sehr klein sind. Dies wäre etwa bei Bakterien der Fall, die Persistenzlängen haben, die kleiner sind als der Durchmesser des Bakteriums.

„Zur Entmischung kommt es, weil die passiven Teilchen von den aktiven immer wieder angestoßen werden“, sagt Frey. „Dadurch entsteht eine effektive Anziehung zwischen den passiven Teilchen, die langfristig einen Cluster bilden. Die aktiven Teilchen verteilen sich gleichmäßig um den Cluster und wirken wie eine Art Käfig für die passiven.“

Allerdings funktioniert die Entmischung nur bei einer ausreichend großen Teilchenzahl und einem ausreichend großen Unterschied in den Diffusionskonstanten. Außerdem braucht der Effekt viel Zeit: „Einen Raum mithilfe von diffusiver Bewegung zu durchlaufen, dauert sehr lange. Da die passiven Teilchen hauptsächlich durch die Stöße der aktiven Teilchen zu diffusiver Bewegung getrieben werden, schlägt die Langsamkeit der Diffusion sogar doppelt zu“, sagt Weber.

„Wir vermuten, dass eine Clusterbildung der passiven Teilchen unter anderem deshalb noch nie zuvor beobachtet wurde, weil die entsprechenden Simulationen zu früh abgebrochen wurden.“ Als nächsten Schritt schlagen die Wissenschaftler vor, die Ergebnisse der Computersimulationen experimentell zu überprüfen.
Physical Review Letters 2016

Publikation:
Binary Mixtures of Particles with Different Diffusivities Demix
Simon N. Weber, Christoph A. Weber and Erwin Frey
Physical Review Letters 2015

Kontakt:
Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Tel.: 089 2180 4538 (Sekretariat)
frey@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie