Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Billardspiel im Atom

08.05.2012
Physiker am Max-Planck-Institut für Quantenoptik verfolgen die Doppelionisation von Argonatomen auf Attosekunden-Zeitskalen.

Trifft ein intensiver Laserpuls auf ein Atom, kommt Bewegung in den Mikrokosmos. Nicht selten wird dann ein Elektron aus dem Atom herausgeschleudert und dieses ionisiert.


Bild 1: Künstlerische Darstellung der nicht-sequenziellen Doppelionisation. Die aus Messdaten gewonnenen 3D Reliefs auf dem Kreis stellen dar, wie sich die Geschwindigkeiten der beiden Elektronen für unterschiedliche Verläufe des elektrischen Feldes des anregenden Laserpulses verändern. Das mittige Relief ist die Summe dieser Einzelmessungen. Aus diesen Daten können die Forscher den genauen Verlauf der Doppelionisation ermitteln. Grafik: Christian Hackenberger/LMU


Bild 2: Eine Forscherin des Labors für Attosekundenphysik am Messapparat COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy). Mit diesem Aufbau werden die Experimente zur Doppelionsiation durchgeführt. Foto: Thorsten Naeser/LMU

Manchmal passiert aber auch noch mehr: nämlich eine so genannte Doppelionisation. Dann löst das Licht nicht nur ein sondern zwei Elektronen aus dem Atom heraus. Diesen Prozess haben jetzt Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik in Garching in enger Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Kernphysik (Heidelberg) und einem internationalen Team erstmals mit Attosekunden-Genauigkeit verfolgt (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde). Die Wissenschaftler berichten darüber in Nature Communications (8. Mai 2012).

Der Vorgang erinnert an ein Billardspiel, bei dem eine Kugel nach einem Zusammenstoß mit einer weiteren in Bewegung versetzt wird. Ähnlich wie ein solcher Zusammenstoß verläuft eine so genannte nicht-sequenzielle Doppelionisation. Dabei reißt starkes Laserlicht ein Elektron aus einem Atom heraus, beschleunigt es erstmal vom Atomrumpf weg und dann wieder auf den Atomrumpf zu. Bei dem Zusammenstoß überträgt das Elektron einen Teil seiner Bewegungsenergie auf ein zweites Elektron, das dabei in einen angeregten Zustand des Atomrumpfes versetzt und wenig später durch das elektrische Feld des Laserpulses aus dem Atomrumpf herausgelöst wird. Da ein Laserpuls üblicherweise viele optische Zyklen enthält, tragen zur nicht-sequenziellen Doppelionisation viele derartige Rekollisionen und Anregungen bei, was die Interpretation von Experimenten erschwert.
Jetzt ist es einem Team vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) in enger Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Kernphysik (Heidelberg) und internationalen Partnern gelungen, eine solche Doppelionisation auf einen einzelnen Kollisionsprozess zu reduzieren und diesen auf Attosekunden-Zeitskalen zu verfolgen.

Dazu schickten die Wissenschaftler einen nur vier Femtosekunden langen Laserpuls auf Argonatome (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Lichtwelle dieses Pulses verfügte über nicht viel mehr als einen Wellenberg und ein Wellental, also eine Schwingung. Durch das elektrische Feld des Lichts wurden die meisten Argonatome einfach ionisiert. Bei jedem tausendsten Atom fand jedoch die nicht-sequenzielle Doppelionisaton statt: Das elektrische Feld des Pulses beschleunigte das erste Elektron. Nach kurzer Zeit jedoch drehte sich das Feld um und beschleunigte das Teilchen zurück in Richtung Atomrumpf bis es schließlich wieder mit diesem kollidierte. Dieser Vorgang dauerte rund 1,8 Femtosekunden. Bei der Rekollision übertrug das Elektron Energie auf den Rumpf und versetzte ein zweites Elektron in einen angeregten Zustand. Rund 400 Attosekunden verblieb das zweite Teilchen dort bis es schließlich, kurz vor dem zweiten Wellenberg des Laserpulses, ebenfalls aus dem Atomrumpf herausgelöst wurde. „Wir waren überrascht, dass das zweite Elektron schon 200 Attosekunden vor dem Maximum des zweiten Wellenbergs den Atomrumpf verließ“, erklärt Boris Bergues, Wissenschaftler im LAP-Team. Bis heute ging man davon aus, dass das Elektron den Atomrumpf erst beim Erreichen der Spitze des Wellenbergs verlässt.

Mit ihren Beobachtungen haben die Garchinger Forscher einen wichtigen Einblick in dynamische Prozesse gewonnen, an denen mehrere Elektronen beteiligt sind. Diese Attosekunden-Dynamik ist vor allem für das Verständnis der Wechselwirkung zwischen Licht und Materie wichtig. Auf Moleküle angewandt könnte die neue Beobachtungstechnik rund um das „Billardspiel“ im Mikrokosmos dazu beitragen, einen tieferen Einblick in das Zusammenspiel von Elektronen bei chemischen Reaktionen zu gewinnen. [Thorsten Naeser]

Originalveröffentlichung:

Boris Bergues, Matthias Kübel, Nora G. Johnson, Bettina Fischer, Nicolas Camus, Kelsie J. Betsch, Oliver Herrwerth, Arne Senftleben, A. Max Sayler, Tim Rathje, Thomas Pfeifer, Itzik Ben-Itzhak, Robert R. Jones, Gerhard G. Paulus, Ferenc Krausz, Robert Moshammer, Joachim Ullrich, Matthias F. Kling

Attosecond Tracing of Correlated Electron-Emission in Non-Sequential Double Ionization, Nature Communications, 8. Mai 2012

Weitere Informationen erhalten Sie von:

Dr. Boris Bergues
Labor für Attosekundenphysik
Max-Planck-Institut für Quantenoptik, Garching
Tel: +49 (0) 89 / 32905 -323
Email: boris.bergues@mpq.mpg.de

Dr. Matthias Kling
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32905 -234
E-Mail: matthias.kling@mpq.mpg.de
http://www.attoworld.de/kling-group/

Priv.-Doz. Dr. Robert Moshammer
Max-Planck-Institut für Kernphysik, Heidelberg
Tel.: +49 (0) 6221 / 516 -461
E-Mail: robert.moshammer@mpi-hd.mpg.de

Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik, Garching
Presse- und Öffentlichkeitsarbeit
Tel.: +49 (0) 89 / 32905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.attoworld.de/kling-group/
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften