Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke ins Innere von Jupiter und Saturn

26.07.2007
Physiker der Universität Jena nutzen neuartigen Laser "FLASH" / Arbeitsgruppe von Prof. Dr. Eckhart Förster als eine der ersten an neuem Forschungsschwerpunkt des BMBF beteiligt

Ob es sich um die Zielankunft in einem Sprintrennen oder das Flügelschlagen eines Insekts handelt, wer schnelle Bewegungen - unverwackelt - auf ein Foto bannen will, muss mit sehr kurzen Belichtungszeiten arbeiten. Das gilt für die konventionelle Fotografie ebenso wie für wissenschaftliche Analysen. "Will man etwa Schwingungen in einem Molekülgitter beobachten, deren Periode nur Sekundenbruchteile beträgt, sind ultrakurze Lichtblitze nötig", erläutert Prof. Dr. Eckhart Förster von der Friedrich-Schiller-Universität Jena. "Sind die Strukturen zudem sehr klein, wie im Falle einzelner Moleküle und Atome, muss die Strahlung außerdem sehr kurzwellig sein und entweder im extremen ultravioletten oder im Bereich der Röntgenstrahlung liegen", so der Professor für Experimentalphysik weiter.

Derzeit gibt es weltweit nur einen einzigen Laser, mit dem sich Blitze im Bereich der weichen Röntgenstrahlung mit ausreichender Intensität erzeugen lassen: "FLASH" ("Free Electron Laser in Hamburg"). Das Deutsche Elektronen-Synchrotron (DESY) in Hamburg betreibt den Rekord-Laser, der bis zu 150 Röntgenpulse pro Sekunde mit einer Spitzenleistung von bis zu 10 Gigawatt pro Puls aussendet. An der Hochleistungsanlage werden künftig auch die Forscher um Prof. Förster arbeiten. Der Jenaer Physiker gehört mit seinem Team zu den ersten Gruppen, die das Bundesministerium für Bildung und Forschung (BMBF) kürzlich als Partner für den neuen Forschungsschwerpunkt "FLASH: Materie im Licht ultrakurzer und extrem intensiver Röntgenpulse" ausgewählt hat. Bis 2010 erhalten die Forscher über 700.000 Euro für ihre Untersuchungen.

Damit würdigt das BMBF die ausgewiesene Expertise der Forscher des Instituts für Optik und Quantenelektronik der Jenaer Universität auf dem Gebiet der Laserentwicklung und -anwendung, die sie bereits mehrfach in Beiträgen renommierter Journale wie "Nature" unter Beweis stellten. In Jena entwickeln die Forscher des Instituts, dessen Direktor Prof. Förster ist, derzeit z. B. den Hochintensitätslaser "POLARIS".

... mehr zu:
»Jupiter »Laser »Materie »Physik »Saturn

Mit Hilfe von "FLASH" wollen die Physiker der Friedrich-Schiller-Universität nun in Kooperation mit Kollegen der Universität Rostock und des DESY in Hamburg die Eigenschaften so genannter "warmer dichter Materie" untersuchen. Diese Form der Materie kommt beispielsweise im Inneren der großen Gasplaneten Saturn und Jupiter vor. "Bisher wissen wir über diese Materieform aber nur sehr wenig", so Prof. Förster. "Lediglich" 10.000 bis 100.000 °C sollen im unzugänglichen Inneren von Saturn und Jupiter vorherrschen. Heiße Materie dagegen, aus der Sterne bestehen oder die im Labor mit Hilfe von Hochleistungslasern erzeugt werden kann, weist Temperaturen von mehreren Millionen Grad auf. "Heiße Materie lässt sich deshalb gut untersuchen, weil sie sichtbare, ultraviolette und Röntgenstrahlung aussendet, die wir auf der Erde messen können", macht Förster den Unterschied deutlich. Warmer Materie fehlt die Energie zum Strahlen - für die Wissenschaftler ist sie deshalb bislang nur äußert schwer zu erfassen.

Um die warme dichte Materie dennoch zu untersuchen, erzeugen sie die Physiker im Labor. Und genau dazu brauchen sie "FLASH". Mit seiner Hilfe beschießen Prof. Förster und seine Kollegen Wasserstofftröpfchen, die zuvor auf minus 260 °C abgekühlt wurden. Für winzige Bruchteile einer Sekunde lässt sich so im Vakuum warme dichte Materie erzeugen. Das Röntgenlicht des Lasers wird zugleich an diesem kurzzeitig existierenden Materiezustand gestreut. "Die Art und Intensität der Streuung gibt uns Aufschluss über seine Temperatur und seine Dichte", so Förster.

Nach einem erfolgreichen Vorexperiment im März dieses Jahres haben die Jenaer Physiker ihre Untersuchungen an "FLASH" jetzt planmäßig begonnen. Damit liefern sie auch wichtige Erkenntnisse, die dazu beitragen, "FLASH" weiter zu verbessern. Der Laser ist die Pilotanlage für den noch weitaus leistungsstärkeren Röntgenlaser XFEL, der ab 2012 noch kürzere Wellenlängen und um Größenordnungen höhere Intensitäten erzeugen wird.

Kontakt:
Prof. Dr. Eckhart Förster
Institut für Optik und Quantenelektronik der Friedrich-Schiller Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947260
E-Mail: foerster[at]ioq.uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Jupiter Laser Materie Physik Saturn

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften