Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Motorprotein mit Schaltgetriebe

25.06.2007
Max-Planck-Wissenschaftler entwickeln eine neue Theorie für die Energieumwandlung durch das Motorprotein Kinesin

Huckepack in der Zelle: Das Motorprotein Kinesin transportiert kleine Zellbestanteile und hangelt sich dabei am Zellskelett entlang. Wie das Getriebe des Nanotraktors funktioniert, war bislang ein Rätsel. Max-Planck-Forscher vom Institut für Kolloid- und Grenzflächenforschung haben jetzt aufgedeckt, wie der winzige Motor schaltet. Ihre neue Theorie zeigt, dass das Motorprotein mehrere Kreisläufe nutzt, um sich fortzubewegen. Der Motor kuppelt - je nachdem, wie viel Last er bewegen muss und wie viel Energie ihm zur Verfügung steht - drei Gänge ein und aus. Die Wissenschaftler korrigieren damit den Irrtum, dass der Motor nur mit einem Gang arbeitet. Daher können sie jetzt auch die scheinbar widersprüchlichen experimentellen Daten erklären. (Physical Review Letters, 20. Juni 2007, doi: 10.1103)


Nanotraktor ganz groß: Das Motorprotein Kinesin in der Röntgenstrukturanalyse. Das Bild zeigt das Motorprotein mit einem gebundenen ADP Molekül. Mit den beiden Motorköpfen bindet sich Kinesin an die Mikrotubuli und transportiert so Zellorganellen. Bild: Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie

Manche Zellorganellen brauchen Hilfe - Mitochondrien etwa: Sie sind zu groß, um zu ihrem Zielort zu gelangen, indem sie einfach durch die Zelle diffundieren. Der Nanotraktor Kinesin, ein Motorprotein, transportiert solche sperrigen Ladungen, indem er an röhrenförmigen Proteinfäden, Mikrotubuli genannt, entlangwandert. Max-Planck-Wissenschaftler am Institut für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt rechnerisch gezeigt, wie genau Kinesin die Energie in Bewegung umsetzt. Und dass es über ein Dreiganggetriebe verfügt.

Kinesin hat zwei identische Motorköpfe, die wie Beine an den Proteinfäden entlangschreiten. Mit jedem Schritt legt das Motorprotein acht Nanometer zurück, acht Millionstel Millimeter. Für 100 Schritte braucht es nur etwas mehr als eine Sekunde. Die Energie für einen Schritt gewinnt der Motor, indem seine Motorköpfe Adenosintriphosphat (ATP), den Energieträger der Zelle, in Adenosindiphosphat (ADP) sowie eine Phosphatgruppe (P) spalten.

... mehr zu:
»ADP »ATP »Molekül »Motorprotein

"Jeder der Köpfe hat eine Bindungstasche, die generell drei Zustände einnehmen kann: Sie kann leer sein, ein ATP oder ein ADP Molekül enthalten", sagt der Wissenschaftler Steffen Liepelt. Kombiniert man diese Zustände miteinander, ergeben sich neun Varianten. Allerdings spielen die zwei Kombinationen mit den identischen Zuständen 'leer-leer' und 'ATP-ATP' für die Schritte keine Rolle. Also bleiben sieben Varianten übrig. Das Modell der Max-Planck-Wissenschaftler beschreibt, mit welcher Wahrscheinlichkeit die Motorköpfe eine dieser Varianten einnehmen. Chemische und mechanische Veränderungen helfen den Motorköpfen, von einem Zustand in den anderen zu wechseln und sich dabei fortzubewegen.

Ausgangspunkt der Max-Planck-Wissenschaftler ist die Beobachtung, dass ein Kopf mit ADP sehr lose am Filament haftet. "Besser binden die Köpfe, wenn sie ATP enthalten oder wenn sie ganz leer sind", sagt Liepelt: "Im ersten Gang steht zunächst ein fest gebundener leerer Kopf vor einem losen Kopf mit ADP. In diesem Spagat ist das Kinesin, wie eine gespannte Feder, durch die vorangegangen Zerfall eines gebundenen ATP Moleküls am hinteren Kopf unruhig geworden. "Bindet der vordere Kopf nun ein ATP Molekül, wird ein Gelenk im Motorprotein gelöst und der hintere Kopf wandert nach vorne", erklärt Liepelt. Der erste Schritt ist getan.

Früher oder später verliert der Kopf, der jetzt vorne steht sein ADP. Er bleibt leer zurück und bindet damit fester an das Filament. Den hinteren mit ATP gefüllten Kopf ereilt ein ähnliches statistisches Schicksal: Das ATP spaltet sich irgendwann in ADP und Phosphat. Das Phosphat löst sich ab, sodass hinten also wieder der lose gebundene Kopf mit ADP steht - der Kreislauf ist geschlossen und der Motor ist bereit für den nächsten Schritt.

Ist die Kraft am Kinesin jedoch zu groß, schaltet Kinesin automatisch in den Rückwärtsgang: "Denn die Last zerrt am Kinesin und der hintere Kopf kann sich nicht nach vorne bewegen", so Liepelt. Dann kann es passieren, dass der hintere lose Kopf sein ADP verliert, bevor er einen Vorwärtsschritt machen kann. Damit ist er leer und geht eine festere Bindung mit dem Filament ein. Am vorderen Kopf zerfällt unausweichlich das ATP Molekül. Übrig bleibt nur ein schwach gebundener Kopf, der ADP enthält. Bindet ein weiteres ATP an den leeren hinteren Kopf, wird das Motorprotein erneut destabilisiert und der lose vordere Kopf wird aufgrund der anliegenden großen Last nach hinten gezogen. Insgesamt hat das Kinesin damit einen Rückwärtsschritt gemacht.

In dem Modell der Max-Planck-Forscher reagiert Kinesin auch auf Veränderungen in der Umgebung: Wenn besonders viel ADP vorhanden ist, dann schaltet Kinesin in einen weiteren Gang, bei dem es deutlich langsamer vorankommt. Im dritten Gang kommt es häufiger vor, dass beide Köpfe gleichzeitig ADP binden. Um jetzt einen Schritt zu machen, muss der Motor warten, bis ein Kopf sein ADP wieder verliert und für ATP frei wird. "Ist die Last allerdings zu groß, hilft auch das Warten im Kriechgang nicht mehr", sagt Liepelt: "Beide losen Beine des Motorproteins verlieren die Haftung, und Kinesin löst sich einfach vom Filament".

Im dritten Gang, wenn eine Zelle viel Energie verbraucht und somit viel ADP produziert hat, arbeitet der Motor des Kinesin also langsamer und schont damit den gesamten Energiehaushalt.

Originalveröffentlichung:

Steffen Liepelt, Reinhard Lipowsky
Kinesin's Network of Chemomechanical Motor Cycles
Physical Review Letters, 20. Juni 2007, doi: 10.1103

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: ADP ATP Molekül Motorprotein

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten