Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Motorprotein mit Schaltgetriebe

25.06.2007
Max-Planck-Wissenschaftler entwickeln eine neue Theorie für die Energieumwandlung durch das Motorprotein Kinesin

Huckepack in der Zelle: Das Motorprotein Kinesin transportiert kleine Zellbestanteile und hangelt sich dabei am Zellskelett entlang. Wie das Getriebe des Nanotraktors funktioniert, war bislang ein Rätsel. Max-Planck-Forscher vom Institut für Kolloid- und Grenzflächenforschung haben jetzt aufgedeckt, wie der winzige Motor schaltet. Ihre neue Theorie zeigt, dass das Motorprotein mehrere Kreisläufe nutzt, um sich fortzubewegen. Der Motor kuppelt - je nachdem, wie viel Last er bewegen muss und wie viel Energie ihm zur Verfügung steht - drei Gänge ein und aus. Die Wissenschaftler korrigieren damit den Irrtum, dass der Motor nur mit einem Gang arbeitet. Daher können sie jetzt auch die scheinbar widersprüchlichen experimentellen Daten erklären. (Physical Review Letters, 20. Juni 2007, doi: 10.1103)


Nanotraktor ganz groß: Das Motorprotein Kinesin in der Röntgenstrukturanalyse. Das Bild zeigt das Motorprotein mit einem gebundenen ADP Molekül. Mit den beiden Motorköpfen bindet sich Kinesin an die Mikrotubuli und transportiert so Zellorganellen. Bild: Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie

Manche Zellorganellen brauchen Hilfe - Mitochondrien etwa: Sie sind zu groß, um zu ihrem Zielort zu gelangen, indem sie einfach durch die Zelle diffundieren. Der Nanotraktor Kinesin, ein Motorprotein, transportiert solche sperrigen Ladungen, indem er an röhrenförmigen Proteinfäden, Mikrotubuli genannt, entlangwandert. Max-Planck-Wissenschaftler am Institut für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt rechnerisch gezeigt, wie genau Kinesin die Energie in Bewegung umsetzt. Und dass es über ein Dreiganggetriebe verfügt.

Kinesin hat zwei identische Motorköpfe, die wie Beine an den Proteinfäden entlangschreiten. Mit jedem Schritt legt das Motorprotein acht Nanometer zurück, acht Millionstel Millimeter. Für 100 Schritte braucht es nur etwas mehr als eine Sekunde. Die Energie für einen Schritt gewinnt der Motor, indem seine Motorköpfe Adenosintriphosphat (ATP), den Energieträger der Zelle, in Adenosindiphosphat (ADP) sowie eine Phosphatgruppe (P) spalten.

... mehr zu:
»ADP »ATP »Molekül »Motorprotein

"Jeder der Köpfe hat eine Bindungstasche, die generell drei Zustände einnehmen kann: Sie kann leer sein, ein ATP oder ein ADP Molekül enthalten", sagt der Wissenschaftler Steffen Liepelt. Kombiniert man diese Zustände miteinander, ergeben sich neun Varianten. Allerdings spielen die zwei Kombinationen mit den identischen Zuständen 'leer-leer' und 'ATP-ATP' für die Schritte keine Rolle. Also bleiben sieben Varianten übrig. Das Modell der Max-Planck-Wissenschaftler beschreibt, mit welcher Wahrscheinlichkeit die Motorköpfe eine dieser Varianten einnehmen. Chemische und mechanische Veränderungen helfen den Motorköpfen, von einem Zustand in den anderen zu wechseln und sich dabei fortzubewegen.

Ausgangspunkt der Max-Planck-Wissenschaftler ist die Beobachtung, dass ein Kopf mit ADP sehr lose am Filament haftet. "Besser binden die Köpfe, wenn sie ATP enthalten oder wenn sie ganz leer sind", sagt Liepelt: "Im ersten Gang steht zunächst ein fest gebundener leerer Kopf vor einem losen Kopf mit ADP. In diesem Spagat ist das Kinesin, wie eine gespannte Feder, durch die vorangegangen Zerfall eines gebundenen ATP Moleküls am hinteren Kopf unruhig geworden. "Bindet der vordere Kopf nun ein ATP Molekül, wird ein Gelenk im Motorprotein gelöst und der hintere Kopf wandert nach vorne", erklärt Liepelt. Der erste Schritt ist getan.

Früher oder später verliert der Kopf, der jetzt vorne steht sein ADP. Er bleibt leer zurück und bindet damit fester an das Filament. Den hinteren mit ATP gefüllten Kopf ereilt ein ähnliches statistisches Schicksal: Das ATP spaltet sich irgendwann in ADP und Phosphat. Das Phosphat löst sich ab, sodass hinten also wieder der lose gebundene Kopf mit ADP steht - der Kreislauf ist geschlossen und der Motor ist bereit für den nächsten Schritt.

Ist die Kraft am Kinesin jedoch zu groß, schaltet Kinesin automatisch in den Rückwärtsgang: "Denn die Last zerrt am Kinesin und der hintere Kopf kann sich nicht nach vorne bewegen", so Liepelt. Dann kann es passieren, dass der hintere lose Kopf sein ADP verliert, bevor er einen Vorwärtsschritt machen kann. Damit ist er leer und geht eine festere Bindung mit dem Filament ein. Am vorderen Kopf zerfällt unausweichlich das ATP Molekül. Übrig bleibt nur ein schwach gebundener Kopf, der ADP enthält. Bindet ein weiteres ATP an den leeren hinteren Kopf, wird das Motorprotein erneut destabilisiert und der lose vordere Kopf wird aufgrund der anliegenden großen Last nach hinten gezogen. Insgesamt hat das Kinesin damit einen Rückwärtsschritt gemacht.

In dem Modell der Max-Planck-Forscher reagiert Kinesin auch auf Veränderungen in der Umgebung: Wenn besonders viel ADP vorhanden ist, dann schaltet Kinesin in einen weiteren Gang, bei dem es deutlich langsamer vorankommt. Im dritten Gang kommt es häufiger vor, dass beide Köpfe gleichzeitig ADP binden. Um jetzt einen Schritt zu machen, muss der Motor warten, bis ein Kopf sein ADP wieder verliert und für ATP frei wird. "Ist die Last allerdings zu groß, hilft auch das Warten im Kriechgang nicht mehr", sagt Liepelt: "Beide losen Beine des Motorproteins verlieren die Haftung, und Kinesin löst sich einfach vom Filament".

Im dritten Gang, wenn eine Zelle viel Energie verbraucht und somit viel ADP produziert hat, arbeitet der Motor des Kinesin also langsamer und schont damit den gesamten Energiehaushalt.

Originalveröffentlichung:

Steffen Liepelt, Reinhard Lipowsky
Kinesin's Network of Chemomechanical Motor Cycles
Physical Review Letters, 20. Juni 2007, doi: 10.1103

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: ADP ATP Molekül Motorprotein

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE