Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller als die Explosion

13.11.2006
Internationales Forscherteam unter Beteiligung der TU Berlin entwickelte neuartiges Verfahren zur Abbildung von kleinsten Proben / Ziel ist die Strukturbestimmung von Molekülen, Viren oder einzelnen Zellen / Veröffentlichung in "Nature Physics"

Ein internationales Wissenschaftlerteam unter Beteiligung der TU Berlin konnte erstmals demonstrieren, wie man mit einzelnen kurzen Pulsen weicher Röntgenstrahlung Bilder von mikroskopischen Proben im Nano-Bereich aufnimmt, bevor sie durch Strahlenschäden explodieren. Diese als "Flash Imaging" bezeichnete Methode beschreiben die Wissenschaftler jetzt in "Nature Physics" (www.nature.com/nphys/index.html).

Die theoretischen Grundlagen dafür erstellte kürzlich die Arbeitsgruppe um den Bio-Physiker Janos Hajdu aus Uppsala und Stanford. Das Experiment selbst fand am "FLASH Freie-Elektronen-Laser" des Deutschen Elektronen-Synchrotron DESY in Hamburg statt. Die Untersuchungen wurden federführend von den Arbeitsgruppen um Janos Hajdu und Henry N. Chapman vom Lawrence Livermore Laboratory (USA) in Zusammenarbeit mit der Arbeitsgruppe um Thomas Möller und Christoph Bostedt vom Institut für Optik und Atomare Physik der TU Berlin durchgeführt.

Ziel des Experiments sind vor allem Anwendungen im Bereich der Abbildung sehr feiner Strukturen, insbesondere von biologischen Substanzen. Um ihre Funktion verstehen zu können, ist das Erkennen der Form bzw. Struktur ein wichtiger Schritt. Hier arbeitet man an der Strukturbestimmung von Viren, von einzelnen Zellen oder von Makromolekülen. Bis jetzt ist es bei Makromolekülen meist notwendig, dass man aus ihnen Kristalle formt. Bei sehr vielen Makromolekülen ist das derzeit mit herkömmlichen wissenschaftlichen Methoden jedoch nicht möglich. Das "Flash-Imaging-Verfahren" birgt in sich den Vorteil, dass auch die Struktur nicht-kristalliner oder nicht-periodischer Proben, das heißt ultimativ einzelner Moleküle ermittelt werden kann.

Die Autoren des "Nature Physics"-Artikels experimentieren bisher nicht mit Makromolekülen, sondern mit dünnen Schichtproben. Sie beschießen sie mit extrem kurzen Lichtpulsen aus dem intensiven FLASH-Laser bei DESY. Die Intensität der Pulse er¬möglicht es den Wissenschaftlern, innerhalb einer extrem kurzen Zeitspanne Bilder der Probe anzufertigen, bevor diese durch den Laserpuls vollständig explodieren. Ein Lichtpuls dauert zirka 25 Femto-Sekunden. Zum Vergleich: Das Licht benötigt für die Strecke von der Erde bis zum Mond eine Sekunde. In 25 Femto-Sekunden legt es nicht einmal den Durchmesser eines Haares zurück.

Das Grundprinzip des 'Flash-Imagings' wird erst durch große Anlagen, nämlich extrem intensive Laser für Röntgenstrahlung möglich, die auf Teilchenbeschleunigern basieren. Die ersten erfolgreichen Experimente wurden durch einen neuen Typ einer extrem intensiven Lichtquelle, dem "Freie-Elektronen-Laser FLASH" am DESY, möglich. Für die Zukunft sind noch größere Röntgenlaser für höherenergetische und damit kurzwellige Strahlung geplant. Ein europäisches Projekt verfolgt den Neubau einer rund drei Kilometer langen Anlage in Hamburg. Ein ähnliches Projekt ist in den USA im Bau. Auch am Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY) findet sich ein Röntgenlaser in der Planung. Damit sollen modernste Strukturuntersuchungen mit einer immer besseren Auflösung ermöglicht werden.

Bei dem Projekt konnten die Physiker der TU Berlin ihre langjährigen Erfahrungen mit Experimenten im Nano-Bereich einbringen. "Wir untersuchen insbesondere die Prozesse, die bei den Explosionen von so genannten Clustern, die aus 100 bis 1000 Atomen bestehen, und Nano-Kristallen ablaufen, wenn sie mit Röntgenstrahlung in Kontakt kommen. Wir waren weltweit die erste Arbeitsgruppe, die dieses Phänomen mit kurzwelliger Strahlung untersuchte, wie sie für die Abbildung feiner Details notwendig ist. Uns interessiert dabei die Wechselwirkungen von Licht mit Materie. Wir analysieren die Wechselwirkung mit Clustern aus verschiedenen Materialien", erläutert Thomas Möller von der TU Berlin. Diese Cluster und Nanokristalle erweitern das Periodensystem der Elemente in die "dritte Dimension". Mit ihren unterschiedlichen Größen und Strukturen stellen sie so ein Bindeglied zwischen Atomen und Festkörpern dar. Ihre Eigenschaften lassen sich daher über die Größe der Teilchen steuern.

Bildmaterial vom "Beugungsbild" des Experiment gibt es unter:
www.xfel.net/de/
Link: XFELmediabank
Link: Pilotanlage FLASH
Weitere Informationen erteilt Ihnen gern: Prof. Dr. Thomas Möller, Institut für Optik und Atomare Physik, TU Berlin, Tel.: 030/314 23712, E-Mail: thomas.moeller@physik.tu-berlin.de

Ramona Ehret | idw
Weitere Informationen:
http://www.tu-berlin.de/
http://www.xfel.net/de/
http://www.nature.com/nphys/index.html

Weitere Berichte zu: DESY Makromolekül Röntgenstrahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik