Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Nanodraht zum Nanoröhrchen

14.09.2006
Max-Planck-Forscher aus Halle präsentieren neue Methode zur Herstellung von Nanoröhren

Für hohle Nanokristalle als hocheffiziente Katalysatoren oder Transportbehälter für Wirkstoffe besteht heute ein großer Bedarf. Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben jetzt ein neues Verfahren vorgestellt, mit dem sich Nanoröhren aus chemischen Verbindungen in hoher Qualität und in großer Zahl herstellen lassen. Die Forscher nutzen den bei der Diffusion in Festkörpern auftretenden Kirkendall-Effekt aus, um aus Nanodrähten, die aus einer chemischen Verbindung im Kern und einer anderen Verbindung in der Hülle bestehen, Nanoröhren einer noch komplexeren Verbindung herzustellen. Daneben gelang ihnen auch der Nachweis, dass man mit dieser Methode auch Nanodrähte selbst sehr effizient herstellen kann (Nature Materials, August 2006).


Herstellungsweg für Nanoröhren aus Nanodrähten (a). Mit dem Transmissionselektronenmikroskop ist zu sehen, wie sich die Spinell-Nanoröhren nach der thermischen Behandlung von Kern-Hüllen-Nanodrähten aus ZnO und Al2O3 bilden (b, c). Die meisten der erzeugten eindimensionalen Nanostrukturen sind über die gesamte Länge des vorherigen Nanodrahtes hohl. Die Forscher haben freistehende Nanoröhren von bis zu 20 Mikrometer Länge mit Durchmessern von 30 bis 40 Nanometern und Wandstärken von 10 Nanometern erzeugt. Diese zeichnen sich durch eine hervorragende Kristallinität und Gleichmäßigkeit aus. Diese Ergebnisse belegen die allgemeine Anwendbarkeit des Kirkendall-Effekts für die Herstellung von hohlen Nanoobjekten. Bild: Max-Planck-Institut für Mikrostrukturphysik

Nanoröhren aus Verbindungsmaterialien können auf ganz verschiedene Weise erzeugt werden - etwa durch Aufrollen von Schichtmaterialien, das Beschichten von Templaten oder das Herauslösen des Kerns aus einem Kern-Hülle-Nanodraht. Doch bei Verbindungsmaterialien, die aus drei Elementen bestehen, zeigen die meisten der bisher verwendeten Methoden Mängel oder Grenzen: Entweder benötigt man geschichtete Materialien oder Template wie poröses Aluminiumoxid, oder die realisierten Nanoröhren haben ein zu kleines Verhältnis von Länge zu Durchmesser. Hinzu kommt, dass die Kristallinität der Nanoröhren bei diesen Methoden unzureichend ist.

Die Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik haben nun eine neue, universell einsetzbare Technik vorgestellt, mit der man Nanoröhren aus ternären - also aus drei Elementen bestehenden - chemischen Verbindungen herstellen kann. Die Forscher demonstrierten die Methode am Beispiel von ultralangen, einkristallinen ZnAl2O4 Nanoröhren (Durchmesser: ca. 40 Nanometer, Wandstärke: etwa 10 Nanometer).

... mehr zu:
»Nanodraht »Nanoröhre

Diese Nanoröhren werden durch eine Festkörperreaktion erzeugt, die durch einen Diffusionsprozess vermittelt wird, welcher zwischen ZnO (Kern) und Al2O3 (Hülle) stattfindet, und zwar vermittels Leerstellenaustauschs. Leerstellen sind Stellen im Kristallgitter, an denen ein Gitterplatz unbesetzt ist. Der Kirkendall-Effekt, eine bei Diffusion von Leerstellen vorkommende Asymmetrie der auftretenden Diffusionsgeschwindigkeiten, die zur Bildung von Poren führen kann, haben die Forscher hier zum ersten Male gezielt auf eindimensionale Nanostrukturen angewendet. Aufgrund der besonderen geometrischen Randbedingungen, die infolge der Zylindersymmetrie der Nanodrähte gegeben sind, können die sich bildenden Poren den Nanodraht nicht verlassen, so dass sie sich in der Mittelachse anreichern und am Ende einen Hohlraum in Form einer Röhre ergeben. Die Forscher haben auf diese Weise Nanoröhren des Spinells ZnAl2O4 hergestellt. Spinelle sind Verbindungen des Typs AB2O4, die kubisch kristallisieren und vielfältige Anwendungen, z.B. in der Nachrichtentechnik und Katalyse, finden.

Die neue Methode hat im Vergleich zu anderen Techniken den Vorteil, dass die Poren bzw. Hohlräume nicht vorab speziell erzeugt werden müssen, weshalb man damit sogar komplex geformte, dreidimensionale hohle Nanostrukturen herstellen kann. Außerdem können Nanoröhren mit einem sehr großen Verhältnis von Länge zu Durchmesser erzeugt und in großen Mengen gleichzeitig hergestellt werden, was wiederum für mögliche Anwendungen eine wichtige Voraussetzung ist. Zudem ist das Ausgangsmaterial ZnO (das z.B. auch in medizinischen Salben enthalten ist) physiologisch sehr gut verträglich. Ferner zeichnet sich die Möglichkeit ab, dass man diese Methode auch auf andere ZnO- oder MgO-basierte Spinell-Nanostrukturen mit angepasster chemischer Zusammensetzung und mit entsprechenden interessanten Eigenschaften übertragen kann.

Originalveröffentlichung:

H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias; U. Gösele
Monocrystalline spinel nanotube fabrication based on the Kirkendal effect
Nature Materials 5 (2006) 627, August 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nanodraht Nanoröhre

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte