Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserlicht im tiefen Infrarot

22.08.2006
Freie-Elektronen-Laser (FEL) sind groß und teuer, dafür liefern sie einzigartiges Licht für Forschung und Entwicklung. Gestern ging im Forschungszentrum Rossendorf am Freie-Elektronen-Laser ein zweiter Undulator erfolgreich in Betrieb, der damit Laserlicht bis in den schwer zugänglichen Bereich des tiefen Infrarots produzieren kann. Ein Undulator ist das Herzstück eines Freie-Elektronen-Lasers, denn er wandelt durch eine spezielle Magnetanordung die hochenergetischen Elektronen in intensives Laserlicht um.
Der Dresdner FEL deckt nun insgesamt den für uns Menschen nicht sichtbaren Bereich von 3 bis 150 Mikrometer Wellenlänge ab. Dabei ist eine der Stärken aller Freie-Elektronen-Laser, dass die Wellenlänge, also quasi die Farbe des Lichts, frei eingestellt werden kann. Besonderes Interesse haben die FZR-Wissenschaftler am Bereich des tiefen Infrarotlichts, das im Übergangsbereich zwischen Mikrowellen und Infrarot liegt und auch Terahertz-Strahlung genannt wird. An der Erzeugung und Anwendung dieser Strahlung z.B. für die medizinische Diagnostik wird zur Zeit weltweit intensiv geforscht. Während für praktische Anwendungen letztendlich billige, kompakte Quellen nötig sind, braucht man zur Grundlagenforschung auch intensive Quellen - und derzeit gibt es keine anderen starken Terahertz-Strahlungsquellen als die großen und teuren Freie-Elektronen-Laser. Im FZR wird die Terahertz-Strahlung insbesondere eingesetzt, um das dynamische Verhalten von Elektronen in Halbleitermaterialien zu untersuchen und besser zu verstehen. Ein derartiges Verständnis ist wichtig zur Entwicklung von in Zukunft noch schnelleren elektronischen Bauelementen und damit Computern. Der FEL im Forschungszentrum Rossendorf wird übrigens von der EU als Nutzereinrichtung gefördert.

Konferenz über Freie-Elektronen-Laser (FEL 2006) vom 27.8. bis 1.9. in Berlin

200 Laser-Experten aus aller Welt erhalten bereits am 30. August die Chance, die neue Lichtquelle im FZR zu besichtigen. Sie sind Teilnehmer der Konferenz FEL 2006, die vom 27. August bis zum 1. September in Berlin stattfindet. Organisatoren der 28. internationalen FEL-Konferenz sind die Berliner Elektronen¬speicher¬ring-Gesellschaft für Synchrotronstrahlung mbH, kurz BESSY, und das Forschungszentrum Rossendorf (FZR).

BESSY wird einen Freie-Elektronen-Laser für den weichen Röntgenbereich aufbauen, das Forschungszentrum Rossendorf betreibt den Laser mit zunächst nur einem Undulator bereits seit gut zwei Jahren und ist damit fest in der internationalen FEL-Gemeinde verankert. Das war einer der Gründe, warum die FEL-Konferenz 2006 von beiden Forschungseinrichtungen gemeinsam in Berlin ausgetragen wird. Die mehr als 300 Teilnehmer kommen vor allem aus den USA, Europa, Japan und China. Das Spektrum der Vorträge umfasst wissenschaftliche, technologische und Nutzungsaspekte von Freie-Elektronen-Laser. Das Experteninteresse gilt dabei den großen, ehrgeizigen Projekten wie etwa dem XFEL von DESY in Hamburg und den kleinen Maschinen wie dem Freie-Elektronen-Laser im FZR.

Am 30. August besichtigen 200 Konferenz-Teilnehmer den FEL im Forschungszentrum Rossendorf in Dresden. Interessierte Medienvertreter sind herzlich eingeladen, an der Führung am 30.08. um 11.00 Uhr im Forschungszentrum Rossendorf teilzunehmen. Um Anmeldung bei Frau Weißig, Tel. 0351 260 - 3688 bzw. Email a.weissig@fz-rossendorf.de, wird gebeten.

Weitere Informationen:
Dr. Peter Michel
Leiter der Zentralabteilung Strahlungsquelle ELBE
Forschungszentrum Rossendorf
Tel.: 0351 260 - 3259
p.michel@fz-rossendorf.de

Pressekontakt:
Dr. Christine Bohnet - Presse- und Öffentlichkeitsarbeit
Forschungszentrum Rossendorf
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Fax: 0351 260 - 2700
c.bohnet@fz-rossendorf.de
Postanschrift: Postfach 51 01 19 ? 01314 Dresden
Besucheranschrift: Bautzner Landstraße 128 ? 01328 Dresden

Information:
Das FZR erbringt wesentliche Beiträge auf den Gebieten der Grundlagenforschung sowie der anwendungsorientierten Forschung und Entwicklung zur

o Aufklärung von Strukturen im nanoskaligen und subatomaren Bereich und der darauf beruhenden Eigenschaften der Materie,

o frühzeitigen Erkennung und wirksamen Behandlung von Tumor- und Stoffwechselerkrankungen als den dominierenden Gesundheitsproblemen in der modernen Industriegesellschaft sowie

o Verbesserung des Schutzes von Mensch und Umwelt vor technischen Risiken.

Dazu werden 6 Großgeräte eingesetzt, die europaweit unikale Untersuchungsmöglichkeiten auch für auswärtige Nutzer bieten. Das Hochfeld-Magnetlabor ist eines dieser Großgeräte.

Das FZR ist mit ca. 650 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft (www.wgl.de) und verfügt über ein jährliches Budget von rund 54 Mill. Euro. Hinzu kommen etwa 7 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute haben ein Budget von über 1 Milliarde Euro und beschäftigen rund 13.000 Mitarbeiter (Stand 1.1.2006).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de
http://www.bessy.de
http://fel2006.bessy.de

Weitere Berichte zu: FEL FZR Freie-Elektronen-Laser Infrarot Laserlicht

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von Hannover auf Weltreise und zum Mars: LZH liefert Laser für ExoMars 2020 aus
21.11.2017 | Laser Zentrum Hannover e.V.

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie