Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Kolossaler Wärmetransport" - Braunschweiger Wissenschaftler legt Grundstein für Wärmeleiter der Zukunft

13.07.2006
Die Quantenphysik lenkt den Blick auf bisher unbekannte Formen von Transportvorgängen. Dr. Fabian Heidrich-Meisner hat erklärt, wie Wärme durch Spins - die elementarsten Magnete der Natur - transportiert werden kann. Eine Entdeckung, die den Weg für Materialien der Zukunft bereiten wird. Für seine Leistung wird er am 13. Juli 2006 mit dem mit 5.000 Euro dotierten Heinrich-Büssing-Preis ausgezeichnet.

Wie kann man etwas schnellstmöglich und effektiv von einem Ort zum anderen bringen? Transportvorgänge sind nicht nur in der Logistik wichtig, sondern spielen seit jeher auch in der Physik eine große Rolle - zum Beispiel, wenn es um den Transport von elektrischem Strom geht. Heutzutage eröffnen sich den Physikern völlig neuartige Transportphänomene durch die Erkenntnisse der Quantenphysik, mit der man im Gegensatz zur klassischen Physik die Materie auf kleinsten subatomaren Längenskalen erforschen kann.

Insbesondere auf dem Gebiet des Wärmetransports konnten in den letzten Jahren wichtige Entdeckungen gemacht werden. Üblicherweise ist Wärme eine ungeordnete chaotische Bewegung der Atome. In den bisher bekannten Wärmeleitern pflanzt sich diese Bewegung vom 'heißen' zum 'kalten Ende' fort. Dadurch wird Wärme geleitet. Nicht so jedoch beim kürzlich entdeckten "kolossalen Wärmetransport" in Quantenmagneten. Diese werden als Ausgangspunkt für neue Materialien gesehen, die die Wärme noch effektiver leiten werden als alles bisher bekannte. Zum Erstaunen der Fachwelt erfolgt der "kolossale Wärmetransport" nun nicht durch Wärmebewegung der Atome, sondern durch Spins. Spins sind die elementar kleinsten Magnete der Natur und eine der klassischen Physik völlig fremde Erscheinung, die nur in der Welt der Quanten zu verstehen ist.

"Dr. Fabian Heidrich-Meisner hat in seiner Dissertation die Theorie des Spin- und Wärmetransports in einer neuen Sorte magnetischer Materialien, den sogenannten Quantenmagnete entwickelt und damit nicht nur eine weitere Tür zur zukünftigen Informationstechnologie der Spintronik geöffnet, sondern gleichzeitig und international führend zum Verständnis des Phänomens kolossaler magnetischer Wärmeleitung in diesen Quantenmaterialien beigetragen", so Professor Dr. Wolfram Brenig, Institut für Theoretische Physik der Technischen Universität Braunschweig.

... mehr zu:
»Spin »Wärme »Wärmetransport

Zur Person

Dr. rer. nat. Fabian Heidrich-Meisner, geboren 1975 in Hannover, studierte von 1995 bis 2001 Physik an der Technischen Universität Braunschweig. Im Laufe seiner dreijährigen Promotion in der Gruppe Festkörpertheorie am Institut für Theoretische Physik veröffentlichte er bereits mehrere Arbeiten in renommierten Fachmedien und referierte mit eigenen Beiträgen auf internationalen Konferenzen. Darüber hinaus sammelte er Lehrerfahrungen in der Leitung zahlreicher Tutorien und Übungsgruppen zum Physikstudium. Seine Forschung wurde durch Schwerpunktprogramme der Deutschen Forschungsgemeinschaft und vom Deutschen Akademischen Austauschdienst mitfinanziert. Mit einer PostDoc Stelle an der Universität von Tennessee und dem Oak-Ridge National Laboratory, USA, setzt Dr. Fabian Heidrich-Meisner seine wissenschaftliche Arbeit fort. Als Anerkennung seiner Leistungen erhielt er von dort ein seltenes Vollstipendium für drei Jahre.

Der Heinrich-Büssing Preis

... gilt als der höchstdotierte Wissenschaftspreis in der Hochschullandschaft der Region. Mit dieser Auszeichnung ehrt die "Stiftung zur Förderung der Wissenschaften an der Carolo-Wilhelmina" jährlich herausragende Leistungen von Nachwuchswissenschaftlerinnen und -wissenschaftlern der Technischen Universität Braunschweig. Der Braunschweigische Hochschulbund will mit seiner Stiftung dazu beitragen, dass die Bedeutung Braunschweigs als Wissenschafts- und Wirtschaftsregion noch stärker bekannt wird.

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de/

Weitere Berichte zu: Spin Wärme Wärmetransport

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie