Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanopartikel für die Analyse

29.06.2006
Universität Jena will Schwerpunkt zu Sensor-Nanopartikeln für Ionen und Biomoleküle aufbauen

Für die Analyse von Substanzen setzen Wissenschaftler schon seit langem Farbstoffe zur Markierung ein. Soll jedoch untersucht werden, ob bestimmte Substanzen in Zellen oder Gewebe vorkommen und wie sie sich dort verhalten, genügen die herkömmlichen Farbstoffe nicht mehr. Sie reagieren zu stark mit Bestandteilen der Zellen oder reichern sich dort an, sagt PD Dr. Gerhard Mohr von der Friedrich-Schiller-Universität Jena. Deshalb arbeitet er mit seinen Kollegen Prof. Dr. Rainer Beckert und Prof. Dr. Klaus Benndorf an der Entwicklung von Nanopartikeln, die Indikatorfarbstoffe einschließen und die als Sensoren innerhalb von Zellen und Geweben dienen können. Dort sollen sie Ionen von Natrium, Kalium oder Chloriden, Biomoleküle wie Glukose oder Aminosäuren sowie Medikamente und ihre Wirkstoffe aufspüren und analysieren.

Zu Sensor-Nanopartikeln soll an der Universität Jena mit Hilfe von Fördermitteln der Europäischen Union (EU) ein Exzellenzschwerpunkt aufgebaut werden. Dafür stellt sie Mohr in den nächsten vier Jahren 1,15 Millionen Euro zur Verfügung, um Wissenschaftler an die Saale zu holen, die an dem Projekt mitarbeiten. Zudem kooperieren die Jenaer Wissenschaftler mit Kollegen der Technischen Universität Compiegne (Frankreich) und der University of East Anglia in Norwich (England).

Zum einen wollen die Wissenschaftler geeignete Farbstoffe entwickeln, die selektiv Ionen, Biomoleküle oder Medikamentenwirkstoffe erkennen können. Dann gelte es, so Dr. Mohr, diese Farbstoffe in Nanopartikel einzuschließen, sie zu polymerisieren. Schließlich sollen die Nanopartikel so gestaltet werden, dass sie biokompatibel sind, also von den zu untersuchenden Zellen oder Geweben gut vertragen werden, ohne dass es zu unerwünschten Reaktionen kommt. Die Größe der Nanopartikel richtet sich dabei nach dem Verwendungszweck. Für Gewebe sind sie zwischen 300 und 600 Nanometer groß, für die Injektion in lebende Zellen nur zwischen 40 und 300 Nanometer. "40 Nanometer sind im Vergleich zu einem Meter so klein, wie ein Fußball neben der Erde", verdeutlicht Dr. Mohr.

Die Einbettung der Indikatorfarbstoffe ist so wichtig, da sich auf diese Weise unerwünschte Reaktionen mit den zu untersuchenden Zellen vermeiden lassen. Das Polymerkügelchen umhüllt die Farbstoffe und schützt sie somit vor Reaktionen etwa mit Proteinen der Zelle. Zudem wird angestrebt, verschiedene Farbstoffe in einem Nanopartikel unterzubringen. Damit könnten in einem Durchgang unterschiedliche Substanzen und ihr Verhalten in der Zelle oder im Gewebe untersucht werden.

Die Nanopartikel sollen dabei nicht etwa einem Menschen oder Tier injiziert werden, betont Dr. Mohr. Vielmehr gehe es um die Analyse in der medizinischen Forschung oder in der Pharmakologie, wo zum Beispiel die Wirkung eines Medikaments in einzelnen Zellen untersucht wird. So könnte analysiert werden, wie der Wirkstoff in die Zelle hineinkommt, sich anreichert und wieder abbaut, in welcher Konzentration er in der Zelle vorliegt oder ob er überhaupt eine Reaktion verursacht. Auf diese Weise lassen sich die in den Zellen ablaufenden Prozesse besser und schneller analysieren. Denkbar wäre auch, so Gerhard Mohr, Sensoren zu entwickeln, die mit Hilfe der Nanopartikel bei der Lebensmittelkontrolle oder bei der Erkennung von Kampfstoffen eingesetzt werden.

Kontakt:
PD Dr. Gerhard Mohr
Institut für Physikalische Chemie der Friedrich-Schiller-Universität Jena
Lessingstraße 10, 07743 Jena
Tel.: 03641/948379
Fax: 03641/948302
E-Mail: gerhard.mohr[at]uni-jena.de

Uwe Frost | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Biomolekül Nanometer Nanopartikel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ruckartige Bewegung schärft Röntgenpulse
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy