Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astronomen durchleuchten Jet eines Schwarzen Lochs

26.06.2006
Forscher der Max-Planck-Gesellschaft klären Mechanismus in den Teilchenströmen eines Quasars auf

Quasare sind kosmische Kraftwerke, deren Energieproduktion von gigantischen Schwarzen Löchern angetrieben wird. Als die hellsten Objekte im All senden sie stark gebündelte, hochenergetische Teilchenströme (Jets) aus, die in allen Frequenzbereichen strahlen. Wie aber funktioniert ein solcher Quasar-Jet? Astronomen um Sebastian Jester, Otto-Hahn-Stipendiat der Max-Planck-Gesellschaft an der University of Southampton, haben mit dem Röntgenteleskop CHANDRA jetzt das Objekt 3C 273 beobachtet. Ergebnis: Die Röntgentrahlung seines Jets wird direkt von ultra-energiereichen Teilchen erzeugt. Eine Untersuchung der Infrarotstrahlung des Jets mit dem Satellitenteleskop SPITZER brachte dieselben Ergebnisse. Beide Studien sind im Internet zugänglich und werden im September im Astrophysical Journal erscheinen.


Der Jet des Quasars 3C 273 geht von einem gewaltigen Schwarzen Loch aus, das man sich unmittelbar außerhalb des linken Bildrandes zu denken hat. Sein hellster, hier gezeigter Teil misst etwa 100000 Lichtjahre. Das Röntgenlicht (aufgenommen mit CHANDRA) ist blau dargestellt, sichtbares Licht (aufgenommen mit HUBBLE) grün und Radiowellen (aufgenommen mit dem VLA-Radioteleskop) rot; in den gelben Bereichen wird sowohl starke Radio- als auch optische Strahlung emittiert. Die neuen Daten von CHANDRA und SPITZER deuten darauf hin, dass die Strahlung in allen Wellenlängenbereichen durch extrem energiereiche Teilchen erzeugt wird. Ein Rätsel bleibt, wie die strahlenden Teilchen im Jet beschleunigt werden. Bild: Sebastian Jester et al. / ApJ

"Die Teilchenströme in den Quasar-Jets bewegen sich fast mit Lichtgeschwindigkeit und erzeugen sichtbares Licht und Röntgenstrahlen. Aber sie sind so weit von der Erde entfernt, dass sie uns extrem leuchtschwach erscheinen und wir bisher keine Daten hatten, aus denen sich der Emissionsmechanismus herausfinden ließ", sagt Sebastian Jester, Hauptautor der ersten Studie und Mitautor der zweiten.

Bisher gab es zwei konkurrierende Vorstellungen darüber, wie der Jet Röntgenlicht erzeugt: Das "Compton-Modell" besagt, dass niederenergetische Teilchen Photonen aus der Mikrowellen-Hintergrundstrahlung streuen und so die hochenergetische Strahlung erzeugen; dem "Synchrotron-Modell" zufolge gibt es im Jet extrem energiereiche Elektronen oder Protonen, die selbst im Röntgenlicht leuchten.

... mehr zu:
»Strahlung »Teilchen

Die neuen Daten in vielen verschiedenen Spektralbereichen zeigen klar, dass die Radiostrahlung, das infrarote und optische Licht sowie die Röntgenstrahlung nicht unabhängig voneinander entstehen. Vielmehr wird die gesamte vom Jet emittierte Strahlung von so genannten ultra-energiereichen Teilchen als Synchrotron-Strahlung abgegeben; das sind elektromagnetische Wellen, die tangential zur Bewegungsrichtung von relativistischen Elektronen oder Positronen austreten, wenn diese in einem Magnetfeld abgelenkt werden. Damit dürfte das "Compton-Modell" aus dem Rennen sein.

Der in der Abbildung dargestellte hellste Teil des Jets hat eine Ausdehnung von etwa 100000 Lichtjahren, die Lebensdauer der strahlenden Teilchen beträgt aber nur etwa 100 Jahre. Die hochenergetischen Partikel, die sich fast mit Lichtgeschwindigkeit bewegen, können nicht einfach aus dem Schwarzen Loch geschossen werden, um dann weit draußen ihre Energie als Strahlung abzugeben - dazu "leben" sie zu kurz. Vielmehr müssen sie vor Ort beschleunigt werden, unmittelbar dort, wo sie ihre Energie als Strahlung abgeben: also überall im leuchtenden Jet.

"Unsere Ergebnisse machen es nötig, radikal neu über die physikalischen Prozesse nachzudenken, die in solchen Jets von Schwarzen Löchern ablaufen", sagt Yasunobu Uchiyama, Leiter der SPITZER-Teams, "aber jetzt haben wir entscheidende neue Hinweise, um eines der großen Rätsel der Astrophysik lösen zu können". Und Sebastian Jester ergänzt: "Wir sehen nun klar, dass der innere Aufbau eines solchen Jets sehr viel komplizierter ist, als wir bisher angenommen haben. Doch mysteriös bleibt die Frage, wie die Jets es schaffen, Teilchen vor Ort zu so hohen Energien zu beschleunigen. Unsere großen Teilchenbeschleuniger - Fermilab, DESY und CERN - könnten da neidisch werden."

Anmerkung

Zu den Mitautoren der CHANDRA-Studie zählt Klaus Meisenheimer vom Max-Planck-Institut für Astronomie in Heidelberg, wo auch Sebastian Jester seine Arbeiten an diesen rätselhaften Objekten begonnen hatte. Mit Wissenschaftlern am Massachusetts Institute of Technology (MIT) und am Smithsonian Astronomical Observatory (SAO) in Cambridge, Massachusetts, wurde ebenfalls eng zusammengearbeitet. Das Team benutzte das Röntgenteleskop CHANDRA, um erstmals die Energieverteilung der Röntgenstrahlung des Jets von 3C 273 zu bestimmen.

Eine weitere Gruppe unter der Leitung von Yasunobu Uchiyama, vormals am Center for Astronomy der Yale-Universität und jetzt Mitarbeiter von JAXA in Japan, hat den Jet von 3C 273 mit dem Weltraumteleskop SPITZER beobachtet, das sehr viel schwächere Infrarot-Strahlungsquellen registriert als erdgebundene Fernrohre. Die Beobachtungen mit SPITZER ermöglichten es den Astronomen in Stanford, Southampton, am Goddard Space Flight Center und am Brera-Observatorium in Mailand, zum ersten Mal den Verlauf des Infrarot-Spektrums zu bestimmen. Damit ließ sich die Frage nach dem Ursprung der Jet-Strahlung klären.

Beide Teams nutzten auch Daten des Weltraumteleskops HUBBLE sowie der Radioteleskope des Very Large Array (VLA) in New Mexico. Die drei Weltraumteleskope und das VLA sehen die Himmelsquellen bei unterschiedlichen Wellenlängen, und erst die Kombination von allen vieren lieferte ein umfassendes Verständnis des Jets.

Beide Studien wurden durch Drittmittel der US-Raumfahrtbehörde NASA unterstützt.
[JS/HOR]
Originalveröffentlichung:
S. Jester et al.
New Chandra observations of the jet in 3C273. I. Softer X-ray than radio spectra and the X-ray emission mechanism

Astrophysical Journal, 10. September 2006, Vorab-Version: http://arxiv.org/abs/astro-ph/0605529

Y. Uchiyama et al.,
Shedding New Light on the 3C 273 Jet with the Spitzer Space Telescope
Astrophysical Journal, 10. September 2006, Vorab-Version: http://arxiv.org/abs/astro-ph/0605530

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Strahlung Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen