Erstmals Blick in Licht-Halbleiter geworfen

Einem Forscherteam unter der Leitung von Frank Cichos, Juniorprofessor für Photonik und optische Materialien an der Technischen Universität Chemnitz, ist es gelungen einen Blick in die lokalen optischen Eigenschaften eines so genannten dreidimensionalen photonischen Kristalls zu werfen. Mit diesem erstmaligen Einblick in das Halbleitermaterial für Licht gelang den Chemnitzer Physikern ein weiterer Schritt auf dem Weg zu schnelleren Computern. Die Forschungsergebnisse werden Heute, Mittwoch, in der Online-Ausgabe der angesehenen Wissenschaftszeitschrift „Physical Review Letters“ veröffentlicht.

„Photonische Kristalle sind periodische Strukturen, die aus transparenten Materialien aufgebaut sind“, erklärt Cichos auf Nachfrage von pressetext. Die physikalischen Eigenschaften dieses Kristalls erlauben Licht auf kleinstem Raum einzufangen und zu transportieren. Darüber hinaus kann mit ihnen die Lichtabstrahlung von fluoreszierenden Stoffen beeinflusst werden. „Das Interessante daran ist, dass der phonetische Kristall das Aussenden von Licht einer bestimmten Farbe durch fluoreszierende Partikel nur in bestimmte Richtungen erlaubt oder sogar verhindert“, ergänzt Forscher Michael Barth, der auch an den Experimenten an photonischen Kristallen beteiligt war.

„Es ist uns nun erstmals gelungen, Lichtquellen in dem photonischen Kristall hineinzubringen und so das Innere des Kristalls zu beobachten“, so Cichos gegenüber pressetext. Die Forscher betteten dazu einzelne, wenige Nanometer kleine Partikel aus dem Halbleitermaterial Cadmiumselenid – so genannte Quantenpunkte – in einen photonischen Kristall aus Polymerkügelchen ein. Diese Quantenpunkte senden Licht aus und dienen so als winzige Scheinwerfer. „Dass es überhaupt möglich ist, auf relativ einfache Art und Weise in komplexe dreidimensionale photonische Kristalle hineinzublicken, war eigentlich die wichtigste Erkenntnis unserer Forschung“, so Cichos.

Ein anderes wichtiges Ergebnis sei, dass der photonische Kristall in der direkten Umgebung der Quantenpunkte entscheidet, in welche Richtungen dieses Licht ausgesandt wird. „Durch die Verwendung von einzelnen Quantenpunkten als Lichtquellen in diesen Materialien ergeben sich ganz neue Möglichkeiten für die Quanteninformationsverarbeitung“, so Cichos. Optische Signale könnten künftig sogar die elektrischen Signale, die durch Computerschaltungen geleitet werden, ablösen oder zumindest ergänzen. Doch der Weg zu photonischen Prozessen, die Informationen per Licht übertragen, sei noch lang. „Es wird bestimmt noch einige Dutzend Jahre dauern, bevor es Realität wird“, so Cichos abschließend gegenüber pressetext.

Media Contact

Reanne Leuning pressetext.deutschland

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer