Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Blick in Licht-Halbleiter geworfen

21.06.2006
Optische Signale könnten elektrische ablösen

Einem Forscherteam unter der Leitung von Frank Cichos, Juniorprofessor für Photonik und optische Materialien an der Technischen Universität Chemnitz, ist es gelungen einen Blick in die lokalen optischen Eigenschaften eines so genannten dreidimensionalen photonischen Kristalls zu werfen. Mit diesem erstmaligen Einblick in das Halbleitermaterial für Licht gelang den Chemnitzer Physikern ein weiterer Schritt auf dem Weg zu schnelleren Computern. Die Forschungsergebnisse werden Heute, Mittwoch, in der Online-Ausgabe der angesehenen Wissenschaftszeitschrift "Physical Review Letters" veröffentlicht.

"Photonische Kristalle sind periodische Strukturen, die aus transparenten Materialien aufgebaut sind", erklärt Cichos auf Nachfrage von pressetext. Die physikalischen Eigenschaften dieses Kristalls erlauben Licht auf kleinstem Raum einzufangen und zu transportieren. Darüber hinaus kann mit ihnen die Lichtabstrahlung von fluoreszierenden Stoffen beeinflusst werden. "Das Interessante daran ist, dass der phonetische Kristall das Aussenden von Licht einer bestimmten Farbe durch fluoreszierende Partikel nur in bestimmte Richtungen erlaubt oder sogar verhindert", ergänzt Forscher Michael Barth, der auch an den Experimenten an photonischen Kristallen beteiligt war.

"Es ist uns nun erstmals gelungen, Lichtquellen in dem photonischen Kristall hineinzubringen und so das Innere des Kristalls zu beobachten", so Cichos gegenüber pressetext. Die Forscher betteten dazu einzelne, wenige Nanometer kleine Partikel aus dem Halbleitermaterial Cadmiumselenid - so genannte Quantenpunkte - in einen photonischen Kristall aus Polymerkügelchen ein. Diese Quantenpunkte senden Licht aus und dienen so als winzige Scheinwerfer. "Dass es überhaupt möglich ist, auf relativ einfache Art und Weise in komplexe dreidimensionale photonische Kristalle hineinzublicken, war eigentlich die wichtigste Erkenntnis unserer Forschung", so Cichos.

Ein anderes wichtiges Ergebnis sei, dass der photonische Kristall in der direkten Umgebung der Quantenpunkte entscheidet, in welche Richtungen dieses Licht ausgesandt wird. "Durch die Verwendung von einzelnen Quantenpunkten als Lichtquellen in diesen Materialien ergeben sich ganz neue Möglichkeiten für die Quanteninformationsverarbeitung", so Cichos. Optische Signale könnten künftig sogar die elektrischen Signale, die durch Computerschaltungen geleitet werden, ablösen oder zumindest ergänzen. Doch der Weg zu photonischen Prozessen, die Informationen per Licht übertragen, sei noch lang. "Es wird bestimmt noch einige Dutzend Jahre dauern, bevor es Realität wird", so Cichos abschließend gegenüber pressetext.

Reanne Leuning | pressetext.deutschland
Weitere Informationen:
http://prl.aps.org
http://www.tu-chemnitz.de

Weitere Berichte zu: Halbleitermaterial Kristall Quantenpunkt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE