Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Flackerndes Licht vom Schwarzen Loch

08.11.2001


Illustration der Strahlungsprozesse in der Umgebung des Schwarzen
Loches XTE J1118+480. Gasströme von einem Begleitstern (außerhalb des
Bildes) bilden eine Scheibe um das Loch (dunkelrot und braun dargestellt).
Gaswolken stürzen von dort in das Schwarze Loch, das selbst unsichtbar
bleibt, und senden dabei Röntgenstrahlung aus (weiß). Gleichzeitig strömt
Gas in Form eines sehr schnellen "Jets" (blau) ins All. Ein langsamerer
Gasstrom strahlt kurz nach dem Röntgenblitz im sichtbaren Licht (grün).
Illustration: Max-Planck-Institut für
Astrophysik/Spruit


Wissenschaftlern aus zwei Max-Planck-Instituten gelingt bisher beste gleichzeitige Messung von Röntgenstrahlung und optischem Licht

Schwarze Löcher saugen mit ihrer enormen Schwerkraft Gas aus der Umgebung auf. Stürzt es in die Schwerkraftfalle hinein, so erhitzt es sich und sendet Röntgenstrahlung aus. Nach der gängigen Theorie müssten die Röntgenblitze auch umgebende Materie aufheizen und zum Leuchten im sichtbaren Licht anregen. Durch gleichzeitige Messung von Röntgenstrahlung und sichtbarem Licht sollte dieses "Lichtecho" nachweisbar sein. Die besten Messungen dieser Art haben Astronomen von den beiden Garchinger Max-Planck-Instituten für extraterrestrische Physik (MPE) und für Astrophysik (MPA) gewonnen. Überraschenderweise ließen sich die Ergebnisse jedoch nicht mit der bisherigen "Echotheorie" erklären. Das Team um Gottfried Kanbach und Henk Spruit vermutet, dass von dem Schwarzen Loch ein Materiestrom ausgeht, in dem die optische Strahlung entsteht (Nature, 8. November 2001).

Die Garchinger Forscher hatten sich für ihre Untersuchungen einen etwa 6000 Lichtjahre entfernten Himmelskörper mit der Bezeichnung XTE J1118+480 (auch KV Ursa Majoris genannt) ausgewählt. Auf Grund früherer Beobachtungen vermuten die Forscher dort ein Schwarzes Loch, das mehr als die sechsfache Sonnenmasse besitzt. Von einem Begleitstern strömt Gas zum Schwarzen Loch hinüber, das sich zunächst in einer Scheibe um es herum ansammelt. Von dort aus strudelt es nach und nach in den kosmischen Mahlstrom hinein. Kommt es hierbei zu Störungen, bei denen größere Gaswolken in das Schwarze Loch hineinstürzen, strahlt das Gas einen intensiven Röntgenblitz ab.

Kanbach und seine Kollegen beobachteten XTE J1118+480 im Juli vergangenen Jahres gleichzeitig im Röntgenbereich mit dem amerikanischen Weltraumteleskop Rossi XTE und im sichtbaren Licht mit einem Teleskop auf Kreta. Für ihre dortigen Messungen verwendeten sie das am Max-Planck-Institut für extraterrestrische Physik entwickelte Instrument OPTIMA; es erlaubt die Messung sehr rascher Helligkeitsänderungen. Mit diesen Synchronbeobachtungen gelang es ihnen, schnelle Variationen der Röntgenstrahlung und des optischen Lichts auf Zeitskalen von Millisekunden miteinander zu korrelieren. "Zu unserer Überraschung zeigte sich jedoch, dass die optische Strahlung viel schneller auf Variationen der Röntgenstrahlung reagiert als wir es auf Grund des bisherigen Modells erwartet hatten", sagt Henk Spruit. Tatsächlich folgte nach jeweils einem Röntgenausbruch ein Helligkeitsanstieg im sichtbaren Bereich schon nach etwa einer Zehntelsekunde.

Die Forscher interpretieren diese Beobachtung als Hinweis auf einen Materieausfluss vom Schwarzen Loch. Demnach lenken Magnetfelder einen Teil des auf das Schwarze Loch zuströmenden Gases um und beschleunigen es senkrecht zur Scheibe. Jedes Mal, wenn eine große Gaswolke in Richtung Schwarzes Loch fällt, gerät auch mehr Materie in den abströmenden Gasstrom. In ihm bilden sich dann Wellen, die den beobachteten Lichtblitz aussenden. Einfachen Abschätzungen zu Folge müsste dieser Ausstrom mit weniger als zehn Prozent der Lichtgeschwindigkeit erfolgen. Die optische Emission käme dann aus einer Region in etwa 20.000 Kilometern Entfernung vom Schwarzen Loch. Die Zeitverzögerung des sichtbaren Lichts gegenüber dem Röntgenausbruch wird so durch eine Laufzeitverzögerung erklärt.

Dieser relativ langsame Ausstrom wäre ein neues Phänomen in der Umgebung eines Schwarzen Lochs. Bislang sind ausschließlich stark gebündelte Gasstrahlen (Radiojets) bekannt, in denen sich die Teilchen mit bis zu 90 Prozent der Lichtgeschwindigkeit vom Schwarzen Loch fortbewegen. Ob diese Interpretation stimmt, wollen die Forscher mit weiteren Beobachtungen an ähnlichen Quellen überprüfen - XTE J1118+480 ist nach seinem siebenmonatigen Ausbruch im Jahr 2000 erloschen.

Dr. Gottfried Kanbach | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Beobachtung J1118+480 Max-Planck-Institut XTE

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atome rennen sehen - Phasenübergang live beobachtet
30.03.2017 | Universität Duisburg-Essen

nachricht Flipper auf atomarem Niveau
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE