Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gammastrahlen lichten den Nebel im intergalaktischen Raum

20.04.2006


Messungen der Strahlung von zwei fernen Quasaren zeigen, dass der Raum zwischen den Galaxien transparenter für Gammastrahlen ist als bisher erwartet - Wissenschaftler aus Heidelberg und Paris veröffentlichen ihre unerwarteten Ergebnisse in der neuen Ausgabe von "Nature"


Mit den H.E.S.S.-Gammastrahlen-Teleskopen in Namibia konnten Astrophysiker erstmals sehr hochenergetische Gammastrahlung von zwei recht weit entfernten Quasaren - das sind aktive Galaxien - messen. Aus diesen Messungen folgt, dass das Universum transparenter für diese Art Gammastrahlung ist, als man bisher angenommen hat. Die Gammastrahlung wird von den gewaltigsten Objekten im Universum erzeugt. Auf ihrem langen Weg von fernen Orten zur Erde werden sie absorbiert, wenn sie mit einem "normalen" Photon etwa im sichtbaren oder infraroten Wellenlängenbereich zusammentreffen. Dieser Hintergrund oder Nebel aus Licht erfüllt das gesamte Universum und ist ein Überrest all des Lichts, das im Universum während dessen gesamten Alters jemals ausgestrahlt wurde. Und zwar Licht von der Entstehung der allerersten Sterne und Galaxien bis in die heutige Zeit. Die Astrophysiker nutzten die fernen Quasare als Sonden und studierten, wie jenes fossile Licht die Energieverteilung der Gammastrahlung modifizierte. Daraus folgte eine Obergrenze für die Menge des Lichts, die deutlich niedriger ausfällt, als in bisherigen Abschätzungen erwartet wurde. Das Ergebnis, das am 20. April im Wissenschaftsmagazin "Nature" veröffentlicht wird, hat nachhaltige Konsequenzen auf unser Verständnis der Galaxienbildung und -entwicklung und erweitert den sichtbaren Horizont des Gammastrahlen-Universums.

Die Suche nach der Geschichte der Licht-Emission im gesamten Universum


Licht wird von allen Arten von Objekten - Sternen, Galaxien, Quasaren...- im Universum zu allen Zeiten emittiert. Das Licht durchdringt gleichmäßig den gesamten intergalaktischen Raum und wird daher auch als "diffuses extragalaktisches Hintergrundlicht" (engl.: extragalactic background light, EBL) bezeichnet. Wissenschaftler haben lange versucht, diese fossile Aufzeichnung der Licht-Emission im Universum zu messen. Seine direkte Bestimmung aus dem gleichmäßigen Leuchten am Nachthimmel ist aber unglaublich schwierig und äußerst ungenau, da Atmosphäre, Sonnensystem und Milchstraße viel heller leuchten.

Die sehr hochenergetische Gammastrahlung bietet eine alternative Möglichkeit, das Hintergrund-Licht zu ermitteln. Die Forscher der internationalen H.E.S.S.-Kollaboration haben mehrere Quasare (die leuchtkräftigsten Quellen hochenergetischer Gammastrahlung) mit diesem Ziel beobachtet. Das Ergebnis war geradezu umwerfend.

Der Nebel der intergalaktischen Photonen

Wenn die sehr hochenergetischen Gammastrahlen mit Licht bei Wellenlängen nahe dem sichtbaren Bereich zusammenstoßen, kann Materie erzeugt werden. Und zwar wird jeweils ein Elektron-Positron-Paar gebildet. Die Gammastrahlen von einer fernen Galaxie werden auf ihrem Weg zur Erde abgeschwächt, da es zu Zusammenstößen mit den Photonen des diffusen Lichts kommen kann. Dieser Effekt ist stärker für energiereichere Gammastrahlen, und das ursprüngliche Gamma-Spektrum wird "röter", etwa so wie die Sonne bei Sonnenuntergang röter aussieht, weil das blaue Licht in der Atmosphäre stärker gestreut wird als das rote Licht. Da die "Rötung" von der Dicke des Absorbers abhängt (in diesem Fall der Intensität der Hintergrund-Photonen), wird die Messung der Dicke möglich.

Die Messung des Photonen-Nebels

"Das Haupt-Problem dabei ist, dass die Verteilung der Gamma-Energien (das Spektrum) von Quasaren viele verschiedene Formen annehmen kann, und bisher konnten wir nicht wirklich sagen, ob ein beobachtetes Spektrum "rot" aussieht, weil es einer starken Rötung ausgesetzt war, oder ob es schon am Ursprung so aussah", sagt Dr. Luigi Costamante, einer der an dieser Entdeckung beteiligten Forscher. Aber die Gamma-Spektren von diesen zwei Quasaren namens H 2356-309 und 1ES 1101-232 haben einen Durchbruch ermöglicht. Die beiden Quasare sind weiter entfernt als bisherige Quellen und konnten nur dank der unerreichten Empfindlichkeit des H.E.S.S.-Instruments gemessen werden. Ihre Spektren sind zu "blau" (d.h. sie enthalten zu viele Gammastrahlen am hochenergetischen Ende des gemessenen Bereichs) um mit der bei hoher Intensität des Hintergrund-Lichts zu erwartenden starken Rötung verträglich zu sein. Ohne noch problematischere oder ganz exotische Szenarien ins Spiel zu bringen, ist die wahrscheinlichste Schlussfolgerung die, dass die Intensität des fossilen Lichts deutlich geringer ist als bisher geglaubt.

Erweiterung des Gammastrahlen-Horizonts des Universums

Die Grenze auf die maximale Intensität des diffusen Lichts, die man aus den H.E.S.S.-Daten ableiten kann, ist in der Tat sehr nahe an der unteren Grenze, die sich aus der Summe des Lichtes einzelner Galaxien ergibt, die wir mit optischen Teleskopen wie dem Hubble-Weltraumteleskop sehen. Dies liefert eine Antwort auf eine der Fragen, die Wissenschaftler schon seit einigen Jahren verwirrt hat: wird das diffuse Licht vor allem von der Strahlung der allerersten Sterne im Universum bestimmt, als das Universum nur wenige hundert Millionen Jahre alt war? Das Ergebnis von H.E.S.S. scheint eine solche Möglichkeit auszuschließen und lässt ebenfalls wenig Spielraum für wesentliche Beiträge anderer Arten von Quellen als normalen Galaxien.

Ein besserer Durchblick durch den intergalaktischen Raum eröffnet zudem neue Perspektiven für die Untersuchung von Gamma-Quellen außerhalb unserer eigenen Galaxie. Die H.E.S.S.-Wissenschaftler werden weiterhin den Gammastrahlen-Himmel erforschen, jetzt wo sie wissen, dass sie bis in größere Entfernungen sehen können als bisher gedacht.

Rückfragen bitte an:

Dr. Luigi Costamante
Dr. Felix Aharonian
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg, Deutschland
Tel. +49 6221 516470 & +49 6221 516485

Dr. Michael Punch
AstroParticule et Cosmologie
Collège de France
11 place Marcelin Berthelot
75231 Paris Cedex 05, Frankreich
Tel. +33 1 44271545

Prof. Stefan Wagner
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Landessternwarte Königstuhl
69117 Heidelberg, Deutschland
Tel. +49 6221 541712

für allgemeine Anfragen von Journalisten:
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. +49 6221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.akademie-fuer-weiterbildung.de

Weitere Berichte zu: Galaxie Gammastrahlen Gammastrahlung QUASAR

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie