Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geheimnisvolle Quantenzustände erstmals beobachtet

16.03.2006


Innsbrucker Physiker bestätigen 35 Jahre alte Theorie von Vitali Efimov.

... mehr zu:
»Physik »Teilchen

Aus dem Labor von Wittgenstein-Preisträger Rudolf Grimm und Start-Preisträger Hanns-Christoph Nägerl gibt es erneut Erstaunliches zu berichten: Den Innsbrucker Experimentalphysikern ist es erstmals gelungen, so genannte Efimov-Zustände zu beobachten. Diese wurden vor über 35 Jahren vom Russen Vitali Efimov theoretisch vorhergesagt und waren seither begehrtes Objekt zahlloser Forschungsgruppen. Die Zeitschrift Nature berichtet darüber in ihrer aktuellen Ausgabe.

Das Zusammenspiel von drei Objekten mathematisch zu beschreiben, gilt in der Physik als schwere Aufgabe. So erwies sich schon die Berechnung der Umlaufbahnen von drei sich gegenseitig anziehenden Himmelskörpern seit den Entdeckungen von Johannes Kepler und Nikolaus Kopernikus als eines der schwierigeren mathematischen Probleme. Die Physiker sprechen deshalb auch vom Dreikörperproblem. Umso überraschender war es denn auch, als der Russe Vitali Efimov Anfang der 70er-Jahre des vergangenen Jahrhunderts Dreikörpersysteme in der Quantenwelt beschrieb, deren theoretische Lösung verblüffend einfach war. Er prophezeite, dass sich drei Teilchen unter Ausnutzung der quantenmechanischen Eigenschaften zu einem Objekt vereinen können, obwohl sie paarweise zu keiner Verbindung imstande sind. Noch erstaunlicher: Wenn man die Entfernung zwischen den Teilchen jeweils um den Faktor 22,7 vergrößert, ergeben sich unendlich viele solcher Efimov-Zustände. Seine scheinbar widersprüchlichen Vorhersagen wurden in den ersten Jahren von den Koryphäen der Physik zunächst stark angezweifelt. In den folgenden Jahrzehnten versuchten sich weltweit zahllose Forschungsgruppen an dem Nachweis dieser mysteriösen Quantenzustände. Das Interesse der Wissenschaft an diesem physikalischen Phänomen ist deshalb so groß, weil es laut Efimov universellen Charakter hat. So gilt das Gesetz in der Kernphysik, wo die so genannte starke Wechselwirkung für die Bindung der Teilchen in den Atomkernen verantwortlich ist, ebenso wie bei molekularen Verbindungen, die auf elektromagnetischen Kräften beruhen.


Weltweit erste Beobachtung

Am Institut für Experimentalphysik der Universität Innsbruck ist es Forschern um Rudolf Grimm und Hanns-Christoph Nägerl nun erstmals gelungen, diese Efimov-Zustände experimentell nachzuweisen und damit ein Stück Physik-Geschichte zu schreiben. Sie beobachteten dazu ein ultrakaltes Gas aus freien Cäsiumatomen, das bei Temperaturen nahe dem absoluten Nullpunkt ein Bose-Einstein-Kondensat bildet. Dieser neue Materiezustand hat quantenmechanische Eigenschaften und die Kräfte zwischen den einzelnen Teilchen können von den Innsbrucker Physikern sehr exakt kontrolliert werden. In den letzten Jahren haben sie in diesem Gas erstmals auch Moleküle gebildet. Mit Hilfe so genannter Feshbach-Resonanzen lassen sich die Abstände zwischen den Teilchen genau einstellen und so auch die Bedingungen für die Dreiteilchenbindung nach Efimov schaffen. Die entstehenden Efimov-Objekte werden dabei nicht direkt beobachtet, sondern indirekt durch einen starken Verlust von Teilchen nachgewiesen. "Wir können diese drei schwach aneinander gebundenen Teilchen nicht einfangen", erläutert Prof. Rudolf Grimm. "Wir sehen sie aber indirekt als sehr drastischen Verlust von Teilchen in unserem ultrakalten Gas, wenn wir ganz bestimmte Magnetfelder anlegen. Ihr charakteristisches Verhalten zeigt sich dann in Efimov-Resonanzen. Eine solche Resonanz haben wir jetzt beobachtet."

Auf der Suche nach weiteren Efimov-Resonanzen

"Der Efimov-Zustand ist ein schwer zu veranschaulichendes Phänomen, er gilt aber seit Jahrzehnten als eines der größten Geheimnisse der Quantenmechanik", erzählt Hanns-Christoph Nägerl. "Das Interesse an unseren Daten ist deshalb in der wissenschaftlichen Gemeinschaft auch enorm groß. Nun liegt es an den Theoretikern, mit unseren neuen Daten das Verständnis des Dreikörperproblems zu vertiefen." Die Innsbrucker Experimentalphysiker wollen unterdessen weiter mit ihren ultrakalten Cäsiumatomen experimentieren und noch andere Efimov-Resonanzen nachweisen. Sie werden dabei vom Österreichischen Wissenschafts-fonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Union unterstützt.

Publikation: Evidence for Efimov quantum states in an ultracold gas of caesium atoms. T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, R. Grimm, Nature 2006, 16. März 2006
Preprint: http://arxiv.org/abs/cond-mat/0512394

Kontakt:
Dr. Hanns-Christoph Nägerl
Institut für Experimentalphysik
Universität Innsbruck
Technikerstraße 25, 6020 Innsbruck, Österreich
Tel.: +43 512 507-6316
Fax: +43 512 507-2921
E-Mail: Christoph.Naegerl@uibk.ac.at

Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
der Österreichischen Akademie der Wissenschaften
A-6020 Innsbruck, Technikerstraße 21a
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | OEAW
Weitere Informationen:
http://www.ultracold.at
http://www.uibk.ac.at
http://www.oeaw.ac.at

Weitere Berichte zu: Physik Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie