Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskopische Wirkung von "Handy-Strahlung" auf Körperzellen

08.12.2005


Augsburger Physiker untersuchen im Auftrag des BMU die Wirkungen nicht-ionisierender elektromagnetischer Strahlung auf zellulärer und subzellulärer Ebene.



Im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit hat das Bundesamt für Strahlenschutz (BfS) ein Forschungsprojekt über die Wirkung nicht-ionisierender elektromagnetischer Strahlung auf molekularer Ebene an das Institut für Physik der Universität Augsburg vergeben. Nicht-ionisierende Strahlung wird gemeinhin als "Elektrosmog" bezeichnet. Über ihre Wirkung auf zellulärer und subzellulärer Ebene - insbesondere im Mobilfunk-Frequenzbereich - ist nur sehr wenig bekannt. Bislang wurden Grenzwerte unter Zugrundelegung rein thermischer Belastungen abgeschätzt und empfohlen. Nun soll im Rahmen des Deutschen Mobilfunk-Forschungsprogramms (DMF) die direkte Wirkung der "Handy-Strahlung" auf den Mikroorganismus detailliert untersucht werden.

... mehr zu:
»BfS »Experimentalphysik »Strahlung


Von biologisch-medizinischer Seite ist seit langem bekannt, dass im Organismus im Bereich der Zellen elektrische Felder allgegenwärtig sind. Intern generierte elektrische Signale von Zellen zeigen den Status des Mikroorganismus, äußere elektrische Felder stimulieren die Protein-Biosynthese und Zellteilung. Zellen und subzelluläre Einheiten interagieren mit ihrer Umgebung über den Austausch von Ionen und über die Änderung des elektrochemischen Potentials. Elektrische Felder und Potentialdifferenzen über die Plasma-Membranen spielen für die Funktionalität der Zellen eine wesentliche Rolle. Insgesamt sind Membran-Proteine hochempfindliche elektronisch-biologische Apparate, die auf Änderungen elektrischer Felder instantan reagieren.

Die Untersuchung, mit der die Forscher am Augsburger Physik-Institut jetzt beauftragt wurden, ist darauf ausgerichtet, etwaige Störungen der Funktionalität oder sonstige Schädigungen von Zellen zu entdecken, die auf externe elektromagnetische Strahlung zurückzuführen sind. Dabei sollen insbesondere Mobilfunk-Frequenzen im Bereich von 500 MHz bis 5 GHz mit einer Intensität, die unserer täglichen Belastung entspricht, für die Untersuchungen benutzt werden.

Durch seine für diesen Themenkomplex ideal geeignete Expertise konnte das Institut für Physik der Universität Augsburg die Ausschreibung des BfS im Wettbewerb für sich entscheiden. Am Projekt beteiligt sind drei Arbeitsgruppen: Die Federführung liegt beim Lehrstuhl für Experimentalphysik V/EKM. Prof. Dr. Alois Loidl und Dipl.-Phys. Rudolf Gulich führen hier dielektrische Spektroskopie an Zellen, Proteinen und Membranen durch und besorgen mikroskopische Netzwerkanalysen. Am Lehrstuhl für Experimentalphysik I sind Prof. Dr. Achim Wixforth und Dr. Matthias Schneider mit der Lösung biophysikalischer Fragestellungen und der Untersuchung von elektrischem Transport an einzelnen Zellen befasst. Am Lehrstuhl für Theoretische Physik I besorgen Prof. Dr. Peter Hänggi und Dr. Gerhard Schmid die theoretische Begleitung des Projekts, wobei hier der Ladungstransport in biologischen Materialien sowie die Bedeutung von Nicht-Gleichgewichtsprozessen bei biophysikalischen Prozessen im Mittelpunkt des Interesses stehen.

PRESSEKONTAKT:
Prof. Dr. Alois Loidl
Lehrstuhl für Experimentalphysik V/EKM
Telefon 0821/598-3600
alois.loidl@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Berichte zu: BfS Experimentalphysik Strahlung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten