Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Waage für Neutrinos

06.09.2005


Im Forschungszentrum Karlsruhe entsteht ein Großexperiment zur Messung der Neutrinomasse


Das Vorspektrometer von KATRIN ist bereits im Forschungszentrum Karlsruhe aufgebaut und wird ausgiebigen Tests hinsichtlich Vakuum, Hochspannung und Prozesstechnik unterzogen. Das erreichte Vakuum hat die hohen Anforderungen bereits übertroffen. An das Vorspektrometer angekoppelt sind zwei supraleitende Magnete. Foto: Forschungszentrum Karlsruhe


Die Gesamtansicht des rund 70 Meter langen KATRIN-Experiments, das im Forschungszentrum Karlsruhe entsteht, zeigt von links nach rechts in Baugruppen: (a) das Monitorsystem, (b) das rückwärtige Pumpsystem, (c) die fensterlose Tritiumquelle, (d) das Elektronentransportsystem, (e) das Vorspektrometer, (f) die Spektrometerkopplung, (g) das Hauptspektrometer mit dem Detektorsystem (h) als Abschluss. Foto: Forschungszentrum Karlsruhe



KATRIN, das KArlsruhe TRItium Neutrino Experiment, soll eine der spannendsten Fragen der Physik klären: Wie groß ist die Masse des Neutrinos und welche Rolle spielt es bei der Entwicklung unseres Universums? KATRIN ist ein Projekt mehrerer europäischer und amerikanischer Institutionen. Schon heute arbeiten unter Federführung des Forschungszentrums Karlsruhe rund 100 Wissenschaftler, Techniker und Studenten an dem Großexperiment. Das zentrale Element - das so genannte Hauptspektrometer - wird einen Durchmesser von rund 10 Metern und eine Länge von 24 Metern haben. Am 5. September 2005 wurde mit dem Ersten Spatenstich für die große Versuchshalle die dreijährige Aufbauphase des Experiments begonnen. KATRIN kostet rund 33 Millionen Euro und wird im Jahr 2008 mit ersten Messungen beginnen.



Neutrinos wurden als Elementarteilchen 1930 theoretisch vorausgesagt. Ein experimenteller Nachweis gelang erst 1957, da Neutrinos wegen ihrer geringen Wechselwirkung mit Materie nur schwer zu messen sind. Erst seit wenigen Jahren ist deshalb bekannt, dass Neutrinos eine kleine aber von Null verschiedene Masse haben. Offen bleibt die Frage, wie groß diese Masse ist. Das im Forschungszentrum Karlsruhe in Bau befindliche Experiment KATRIN (KArlsruhe TRItium Neutrino Experiment) soll diese Frage aufklären, die als eine der Schlüsselfragen der modernen Physik gilt. Die Neutrinomasse hat Auswirkungen auf die Teilchenphysik, die Astrophysik und die Kosmologie. So haben Neutrinos nach dem Urknall die großräumige Struktur des Universums beeinflusst.

KATRIN nutzt den Effekt, aufgrund dessen der Physiker Wolfgang Pauli das Neutrino 1930 voraussagte: Beim Beta-Zerfall in Atomkernen wird ein Neutron in ein Proton und ein Elektron umgewandelt. Das entstehende Elektron hat aber keine feste Energie, sondern schwankt von Null bis zu einer Maximalenergie, die praktisch der gesamten beim Zerfall freiwerdenden Energie entspricht. Beim Beta-Zerfall wird aber immer eine konstante Energie freigesetzt. Um fundamentale Grundgesetze der Physik (Energie- und Impulserhaltung) zu gewährleisten, muss der Unterschied zwischen der Energie der Elektronen (Ruhemasse plus Bewegungsenergie) und der Gesamtenergie von einem weiteren Teilchen übernommen werden, eben dem Neutrino. Die Energie des Neutrinos setzt sich nun wieder aus zwei Bestandteilen zusammen - seiner (Ruhe-)Masse und seiner Bewegungsenergie. Da die Neutrinos aus dem Tritiumzerfall nicht nachgewiesen werden können, muss auf die Messung des Elektrons zurückgegriffen werden: Aus der genauen Beobachtung des Energiespektrums der Elektronen in der Nähe der Maximalenergie kann auf die Neutrinomasse geschlossen werden. Wenn das Neutrino eine Masse hat und damit, gemäß Einsteins berühmter Formel E=mc², eine Mindestenergie mit sich trägt, wird das Energiespektrum in der Nähe der Maximalenergie des Beta-Zerfalls modifiziert sein.

Als Beta-Strahler wird in KATRIN Tritium eingesetzt, eine schwere Form von Wasserstoff, die mit einer Halbwertszeit von 12,3 Jahren zerfällt. Beim Beta-Zerfall von Tritium wird eine Gesamtenergie von 18 600 Elektronenvolt frei, die sich auf Elektron und Neutrino verteilt. Die Elektronen werden im Herzstück von KATRIN, dem riesigen elektrostatischen Hauptspektrometer, auf ihre Energie untersucht. Das Spektrometer wird einen Durchmesser von rund 10 Metern und eine Länge von 24 Metern haben; die Gesamtlänge des Experiments wird bei 70 Metern liegen.

"Das Forschungszentrum Karlsruhe ist weltweit fast der einzige mögliche Standort für dieses anspruchsvolle Experiment", erläutert Johannes Blümer, Leiter des Instituts für Kernphysik des Forschungszentrums Karlsruhe und Professor am Institut für Experimentelle Kernphysik der Universität Karlsruhe. "Hier sind alle notwendigen fachlichen Voraussetzungen zu finden: Das europaweit einmalige Tritium-Labor Karlsruhe (TLK), Erfahrungen mit Hochvakuum und Kryotechnik für große wissenschaftliche Apparaturen, Erfahrungen in der Supraleiterentwicklung, Know-how und Infrastruktur für Bau und Betrieb solcher Großanlagen und natürlich Exzellenz in Neutrino- und Astroteilchen-Physik. Schließlich kann auch nur eine Großforschungseinrichtung die Hauptlast der Finanzierung eines solchen Großgerätes übernehmen, die aus dem Haushalt der Helmholtz-Gemeinschaft bereitgestellt wird."

Aus diesem Grund hat sich eine internationale Kollaboration, an der praktisch alle auf dem Gebiet Neutrinoforschung engagierten Forschungseinrichtungen in Europa und den USA beteiligt sind, für das Forschungszentrum Karlsruhe als Standort entschieden. Zur Zeit sind 12 Forschungseinrichtungen mit rund hundert Wissenschaftlern, Technikern und Studenten bei KATRIN engagiert. Guido Drexlin vom Institut für Kernphysik des Forschungszentrums und Professor an der Universität Karlsruhe ist Leiter des Projekts. Er und Professor Christian Weinheimer von der Universität Münster sind die beiden Sprecher der internationalen KATRIN Kollaboration.

Aufbau von KATRIN

KATRIN ist insgesamt 70 Meter lang und besteht aus verschiedenen Abschnitten mit fünf wesentlichen Komponenten: Einer fensterlosen Tritium-Quelle, einer Transportstrecke, in der das Tritium mit Pumpen und Kryofallen entfernt wird und die die Elektronen zum Spektrometer führt, einem elektrostatischen Vorspektrometer, dem riesigen elektrostatischen Hauptspektrometer sowie einem Detektor für die Elektronen.

Die Tritium-Quelle wird einen kontinuierlichen Strom von 100 Milliarden Beta-Zerfällen pro Sekunde erzeugen. Die Tritium-Quelle wird direkt im Tritium-Labor Karlsruhe, an das KATRIN angebaut wird, errichtet. Dabei ist eine hohe isotopische Reinheit des Tritiums erforderlich. Um Störungen durch die thermische Bewegung des Tritiums zu vermeiden, muss die Quelle auf rund 27 Kelvin (-246 Grad Celsius) gekühlt werden. Die in der Quelle entstehenden Zerfallselektronen werden auf der gesamten Länge von KATRIN durch Magnetfelder von 40 supraleitenden Spulen auf ihrer Bahn gehalten. Auf dem Weg zum Vorspektrometer wird das Tritium durch Pumpen entfernt, wodurch ein geschlossener Tritiumkreislauf ermöglicht wird. Kryofallen garantieren, dass der Spektrometerbereich von KATRIN tritiumfrei ist. Im Vorspektrometer werden die niederenergetischen Elektronen (unter 18 300 Elektronenvolt) herausgefiltert, da diese keine verwertbaren Informationen über die Neutrinomasse tragen. Die verbleibenden Elektronen mit Energien nahe der gesamten Zerfallsenergie des Tritium-Beta-Zerfalls (18 600 Elektronenvolt) gelangen in das Hauptspektrometer. Hier wird eine variable Gegenspannung angelegt, die die Elektronen überwinden müssen. In einem anschließenden hochauflösenden Halbleiterdetektor werden die Elektronen nachgewiesen, die das Hauptspektrometer passieren.

In der Nähe der Maximalenergie des Tritium-Beta-Zerfalls misst man dann mit KATRIN in einer mehrjährigen Messphase ein Elektronenspektrum, das abhängig ist von der fehlenden Ruhemasse des Neutrinos. Simulationen haben die zu erwartenden Spektren für verschiedene Ruhemassen vorausberechnet. Mit KATRIN kann die Masse des Neutrinos gemessen werden, wenn diese größer als 0,2 Elektronenvolt ist (zum Vergleich: die Ruhemasse des Elektrons liegt bei 511 000 Elektronenvolt). Diese Empfindlichkeit von 0,2 Elektronenvolt entspricht einer Masse von 3,64 x 10(-37) Kilogramm, einer Zahl mit 36 Nullen zwischen Komma und erster Ziffer.

Mit der Errichtung von KATRIN ist eine Vielzahl technologischer Herausforderungen verbunden; dazu gehören die Bereitstellung und Reinhaltung des benötigten Tritiums über lange Zeiträume, die Temperaturstabilität der Quelle mit Abweichungen unter einem Promille bei 27 Kelvin (-246 Grad Celsius), ein extremes Hochvakuum (unter 10(-11) Hektopascal) im riesigen Volumen des Hauptspektrometers (rund 1400 Kubikmeter), die Entwicklung und der Betrieb einer Vielzahl supraleitender Magnete sowie die präzise Stabilisierung einer Hochspannung von rund 20 000 Volt.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Dr. Joachim Hoffmann | idw
Weitere Informationen:
http://www.fzk.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten