Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel wiegt ein Neutrino?

07.06.2005


Physiker wollen Elementarteilchen vermessen



Sie sind nicht zu sehen, sie sind nicht zu messen, doch blieben sie reine Theorie, das Weltbild der Physiker würde zusammenbrechen. Neutrinos, so vermuten sie, sind eine Milliarde mal häufiger als alle anderen Teilchen im Universum, doch ihre Masse ist unbekannt. Um diese herauszufinden, beteiligt sich Prof. Dr. Christian Weinheimer vom Institut für Kernphysik der Universität Münster an dem Experiment "Katrin", dem "Karlsruher Tritium Neutrinoexperiment", das von rund 100 Wissenschaftlern aus fünf Ländern am Forschungszentrum Karlsruhe aufgebaut wird. Er ist mit seinem Team verantwortlich für Teile der Technologie und der Kalibrierung des 36 Millionen teuren Experiments, das von ihm und Prof. Dr. Guido Drexlin vom Institut für Experimentelle Kernphysik der Universität Karlsruhe geleitet wird.

... mehr zu:
»Neutrino »Tritium »Weinheimer


Insgesamt existieren zwölf fundamentale Elementarteilchen, von denen neun sehr gut bekannt und beschrieben sind. Dazu gehören beispielsweise die Elektronen, die die Atomhüllen bilden und Quarks, aus denen der Atomkern besteht. Auch Neutrinos gehören zu den fundamentalen Bausteinen der Natur. Nachgewiesen wurden sie erstmals 1957 beim radioaktiven Beta-Zerfall, in der Fusion der Sonne. Größtenteils kosmischen Ursprungs, wird ihnen eine grundlegende Rolle bei der Entstehung des Universums zugeschrieben. "Lange Zeit ist man davon ausgegangen, dass Neutrinos keine Masse haben", sagt Weinheimer. "Inzwischen konnte man nachweisen, dass sie sehr wohl ein Gewicht haben." Da Neutrinos so häufig sind, ist ihre Masse von entscheidender Bedeutung, um zu verstehen, wie das Universum entstanden ist und was es zusammenhält. "Zwei Drittel des Universums bestehen aus so genannter Dunkler Energie, rund ein Drittel aus der so genannten Dunklen Materie, zu denen auch die Neutrinos gehören. Diese Begriffe liefern im Grunde die Erklärung für bestimmte Phänomene, doch verstanden haben wir sie deswegen noch lange nicht", so Weinheimer.

Direkt wiegen lassen sich die Neutrinos, die praktisch alles im All ohne Energieverlust durchdringen, nicht. Bei den bisherigen Experimenten konnte man durch die Umwandlung von Neutrinos zwar Unterschiede in der Masse feststellen, aber nicht das absolute Gewicht. Mit "Katrin" soll sich das ändern. Kernstück des Experiments ist das "beste Elektronenspektrometer" der Welt, das derzeit in Karlsruhe gebaut und vom Bundesforschungsministerium finanziert wird. Mit einem Durchmesser von zehn Metern und einer Gesamtlänge von 23 Metern wird es auch zu den größten der Welt gehören. "Von der Sonne kommen auf der Erde pro Quadratzentimeter mehr als 65 Milliarden Neutrinos in der Sekunde an, trotzdem sind sie nicht zu spüren. Sie durchdringen die Materie und damit auch die Detektoren", erklärt Weinheimer die Probleme.

Um sie trotzdem nachzuweisen, nutzen die Physiker das Gesetz der Energierhaltung: Zerfällt das Wasserstoffisotop Tritium in Elektronen und Neutrinos, lässt sich die Zerfallsenergie des Elektrons messen. Da man diese gut kennt, lässt sich durch die Differenz auch die Energie des Neutrinos und damit dessen Masse bestimmen. Das gasförmige Tritium hat eine Halbwertzeit von zwölf Jahren. Die Elektronen, die beim Zerfall entstehen, haben eine Energie von maximal 18600 Elektronenvolt. Supraleitende Magneten fokussieren die Elektronen im größten je gebauten Ultrahochvakuumtank und leiten sie zu dem Elektronenspektrometer. "Magnete benutzen wir, weil die Elektronen sofort an Energie verlieren würden, wenn sie auf Materie träfen und dadurch das Ergebnis verfälscht würde", so Weinheimer. Am Ende fliegen die Elektronen durch eine Gegenspannung. Für jene Elektronen, die sie überwinden, kann nun die Zerfallsenergie und im Umkehrschluss auch die der Neutrinos bestimmt werden.

Dabei ist extreme Präzision, notwendig. Sie zu erreichen, gehört zu den Grundproblemen des Experiments. "Münster ist dafür verantwortlich, dass das elektronenmagnetische Design der ganzen Apparatur mit über 30 supraleitenden Magenten und den zwei Spektrometern stimmt", so Weinheimer. Noch schwieriger ist es, die immer gleiche Spannung zu halten. Zur Eichung vermessen die münsterschen Wissenschaftler Elektronen, deren Spannung immer auf dem gleichen Level bleibt. Kein Voltmesser auf der Welt kann 18.600 Volt messen, deshalb wird am Institut ein Präzisionsspannungsteiler entwickelt. Die Gefahr, dass der Elektronenstrom aus dem Tritiumzerfall durch andere Elektronen verunreinigt wird, ist sehr hoch. Deshalb entwirft Weinheimer mit seiner Gruppe feine Drahtgitter, die das verhindern sollen. "Wegen der Hochspannung und des Vakuums ist das allerdings keine triviale Aufgabe", so der Physiker.

Noch wird "Katrin" gebaut, die ersten Messungen im Ernstfall sind 2008 zu erwarten. Bis die notwendige Menge an Daten gesammelt ist, werden weitere Jahre vergehen. Für Weinheimer, seit einem halben Jahr in Münster, ist das Projekt schon jetzt ein Erfolg: "Es ist toll, hier mit so gut ausgebildeten Mitarbeitern arbeiten zu können."

Brigitte Nussbaum | idw
Weitere Informationen:
http://www.uni-muenster.de/

Weitere Berichte zu: Neutrino Tritium Weinheimer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spin-Strom aus Wärme: Neues Material für höhere Effizienz
20.11.2017 | Universität Bielefeld

nachricht cw-Wert wie ein Lkw: FH Aachen testet Weihnachtsbaum im Windkanal
20.11.2017 | FH Aachen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie