Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel wiegt ein Neutrino?

07.06.2005


Physiker wollen Elementarteilchen vermessen



Sie sind nicht zu sehen, sie sind nicht zu messen, doch blieben sie reine Theorie, das Weltbild der Physiker würde zusammenbrechen. Neutrinos, so vermuten sie, sind eine Milliarde mal häufiger als alle anderen Teilchen im Universum, doch ihre Masse ist unbekannt. Um diese herauszufinden, beteiligt sich Prof. Dr. Christian Weinheimer vom Institut für Kernphysik der Universität Münster an dem Experiment "Katrin", dem "Karlsruher Tritium Neutrinoexperiment", das von rund 100 Wissenschaftlern aus fünf Ländern am Forschungszentrum Karlsruhe aufgebaut wird. Er ist mit seinem Team verantwortlich für Teile der Technologie und der Kalibrierung des 36 Millionen teuren Experiments, das von ihm und Prof. Dr. Guido Drexlin vom Institut für Experimentelle Kernphysik der Universität Karlsruhe geleitet wird.

... mehr zu:
»Neutrino »Tritium »Weinheimer


Insgesamt existieren zwölf fundamentale Elementarteilchen, von denen neun sehr gut bekannt und beschrieben sind. Dazu gehören beispielsweise die Elektronen, die die Atomhüllen bilden und Quarks, aus denen der Atomkern besteht. Auch Neutrinos gehören zu den fundamentalen Bausteinen der Natur. Nachgewiesen wurden sie erstmals 1957 beim radioaktiven Beta-Zerfall, in der Fusion der Sonne. Größtenteils kosmischen Ursprungs, wird ihnen eine grundlegende Rolle bei der Entstehung des Universums zugeschrieben. "Lange Zeit ist man davon ausgegangen, dass Neutrinos keine Masse haben", sagt Weinheimer. "Inzwischen konnte man nachweisen, dass sie sehr wohl ein Gewicht haben." Da Neutrinos so häufig sind, ist ihre Masse von entscheidender Bedeutung, um zu verstehen, wie das Universum entstanden ist und was es zusammenhält. "Zwei Drittel des Universums bestehen aus so genannter Dunkler Energie, rund ein Drittel aus der so genannten Dunklen Materie, zu denen auch die Neutrinos gehören. Diese Begriffe liefern im Grunde die Erklärung für bestimmte Phänomene, doch verstanden haben wir sie deswegen noch lange nicht", so Weinheimer.

Direkt wiegen lassen sich die Neutrinos, die praktisch alles im All ohne Energieverlust durchdringen, nicht. Bei den bisherigen Experimenten konnte man durch die Umwandlung von Neutrinos zwar Unterschiede in der Masse feststellen, aber nicht das absolute Gewicht. Mit "Katrin" soll sich das ändern. Kernstück des Experiments ist das "beste Elektronenspektrometer" der Welt, das derzeit in Karlsruhe gebaut und vom Bundesforschungsministerium finanziert wird. Mit einem Durchmesser von zehn Metern und einer Gesamtlänge von 23 Metern wird es auch zu den größten der Welt gehören. "Von der Sonne kommen auf der Erde pro Quadratzentimeter mehr als 65 Milliarden Neutrinos in der Sekunde an, trotzdem sind sie nicht zu spüren. Sie durchdringen die Materie und damit auch die Detektoren", erklärt Weinheimer die Probleme.

Um sie trotzdem nachzuweisen, nutzen die Physiker das Gesetz der Energierhaltung: Zerfällt das Wasserstoffisotop Tritium in Elektronen und Neutrinos, lässt sich die Zerfallsenergie des Elektrons messen. Da man diese gut kennt, lässt sich durch die Differenz auch die Energie des Neutrinos und damit dessen Masse bestimmen. Das gasförmige Tritium hat eine Halbwertzeit von zwölf Jahren. Die Elektronen, die beim Zerfall entstehen, haben eine Energie von maximal 18600 Elektronenvolt. Supraleitende Magneten fokussieren die Elektronen im größten je gebauten Ultrahochvakuumtank und leiten sie zu dem Elektronenspektrometer. "Magnete benutzen wir, weil die Elektronen sofort an Energie verlieren würden, wenn sie auf Materie träfen und dadurch das Ergebnis verfälscht würde", so Weinheimer. Am Ende fliegen die Elektronen durch eine Gegenspannung. Für jene Elektronen, die sie überwinden, kann nun die Zerfallsenergie und im Umkehrschluss auch die der Neutrinos bestimmt werden.

Dabei ist extreme Präzision, notwendig. Sie zu erreichen, gehört zu den Grundproblemen des Experiments. "Münster ist dafür verantwortlich, dass das elektronenmagnetische Design der ganzen Apparatur mit über 30 supraleitenden Magenten und den zwei Spektrometern stimmt", so Weinheimer. Noch schwieriger ist es, die immer gleiche Spannung zu halten. Zur Eichung vermessen die münsterschen Wissenschaftler Elektronen, deren Spannung immer auf dem gleichen Level bleibt. Kein Voltmesser auf der Welt kann 18.600 Volt messen, deshalb wird am Institut ein Präzisionsspannungsteiler entwickelt. Die Gefahr, dass der Elektronenstrom aus dem Tritiumzerfall durch andere Elektronen verunreinigt wird, ist sehr hoch. Deshalb entwirft Weinheimer mit seiner Gruppe feine Drahtgitter, die das verhindern sollen. "Wegen der Hochspannung und des Vakuums ist das allerdings keine triviale Aufgabe", so der Physiker.

Noch wird "Katrin" gebaut, die ersten Messungen im Ernstfall sind 2008 zu erwarten. Bis die notwendige Menge an Daten gesammelt ist, werden weitere Jahre vergehen. Für Weinheimer, seit einem halben Jahr in Münster, ist das Projekt schon jetzt ein Erfolg: "Es ist toll, hier mit so gut ausgebildeten Mitarbeitern arbeiten zu können."

Brigitte Nussbaum | idw
Weitere Informationen:
http://www.uni-muenster.de/

Weitere Berichte zu: Neutrino Tritium Weinheimer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE