Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Materie von Antimaterie unterscheidet

13.07.2001


  • Warum nicht alles Gammastrahlung ist
  • Materie und Antimaterie: Physiker finden neuen Unterschied
  • Bahnbrechende Erkenntnis hilft den Kosmos verstehen

Einen neuen Unterschied im Verhalten von Materie und Antimaterie haben Wissenschaftler der Gruppe "BABAR" nun am Stanford Linear Beschleuniger (SLAC) in einer bahnbrechenden Messung entdeckt: Unter Beteiligung von Prof. Dr. Helmut Koch, Dr. Marcel Kunze und Dr. Klaus Peters (Fakultät für Physik und Astronomie der RUB) wiesen sie die so genannte "CP-Verletzung" beim Zerfall von B-Mesonen - schweren, kurzlebigen Elementarteilchen - nach. Das Phänomen ist wahrscheinlich verantwortlich dafür, dass es im Universum einen Überschuss der Materie gegenüber der Antimaterie gibt.

Gespiegelte Teilchen löschen sich aus

Antimaterie kommt in unserer Welt gewöhnlich nicht vor, da sich Materie und Antimaterie bei der Berührung gegenseitig vernichten: Wenn sie zusammenkommen, zerstrahlen sie zu Gammastrahlung. Antiwasserstoff ist z. B. das ,,Spiegelbild" des Wasserstoffatoms. Das spiegelbildliche Atom besteht aus Antimaterie - einem positiv geladenen ,,Elektron" (dem Positron), das einen negativ geladenen Atomkern (ein Antiproton) umkreist. An Beschleuniger-Anlagen können Wissenschaftler Antimaterie künstlich erzeugen.

Bahnbrechender Erfolg nach 37 Jahren Suche

Wäre im All gleich viel Materie und Antimaterie vorhanden, würden sie sich gegenseitig auslöschen. Es besteht also ein Materie-Überschuss, dem wir unser Dasein erst verdanken. Einen Grund für diese Asymmetrie fanden Wissenschaftler (Fitch und Cronin) erstmals 1964 und wurden dafür mit dem Nobelpreis belohnt. Sie beobachteten an neutralen K-Mesonen, leichten, langlebigen Elementarteilchen, die CP-Verletzung: einen Unterschied im Verhalten von Materie- und Antimaterie-Teilchen beim Zerfall. Seitdem suchten Physiker weltweit nach weiteren Beispielen für die CP-Verletzung - bis jetzt: "Nach 37 Jahren der Suche wissen die Physiker nun, dass es mindestens zwei Sorten von Elementarteilchen gibt, die dieses erstaunliche Phänomen zeigen", erläutert S. Smith (Princeton Universität), Sprecher der Forscherkollaboration "BABAR".

Aus der B-Mesonen-Fabrik in den Detektor

Die Gruppe entwickelte einen leistungsfähigen Detektor, der kleine Unterschiede bei speziellen Zerfällen von B-Mesonen bzw. ihren Antiteilchen messen kann. Seit etwa zwei Jahren sammelt der Detektor Daten. Unverzichtbar für die Experimente war auch ein 2,2 Kilometer langer Elektronen/Positronen-Speicherring, eine "B-Mesonen-Fabrik". Er erlaubt es, Elektronen- und Positronenstrahlen hoher Energie auf kleinstem Raum kollidieren zu lassen.

Messung bestätigt Modell

In ihrem jetzt zur Veröffentlichung in der Fachzeitschrift "Physical Review Letters" eingereichten Beitrag benennen die Forscher den Wert der Asymmetrie mit sin2b = 0,59 ± 0,14, der sich signifikant von Null unterscheidet. Die Wahrscheinlichkeit, dass der Unterschied doch gleich Null ist, liegt bei 1:30.000. Der gefundene Wert bestätigt Vorhersagen des so genannten Standardmodells, das somit seine Gültigkeit behält.

Dank gilt dem ganzen Team

Neu für amerikanische Verhältnisse war die starke Beteiligung nichtamerikanischer Gruppen. Aus Deutschland beteiligten sich Universitätsgruppen aus Bochum, Dresden und Rostock sowohl am Aufbau der Experimente als auch am Betrieb und der Datenauswertung. Die Finanzierung erfolgte überwiegend durch das Bundesministerium für Bildung und Forschung (BMBF). "Ein großer Teil der Forschung geht auf das Konto von Diplomanden und Doktoranden", betont Dr. Klaus Peters, "und für die maßgebliche technische Unterstützung beim Aufbau der einzelnen Komponenten und Testsysteme danken wir den hervorragenden Werkstätten des Instituts für Experimentalphysik."

Weitere Informationen

Dr. Klaus Peters, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-23532, Fax: 0234/32-14170, Email: klaus@ep1.ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.slac.stanford.edu/BFROOT/

Weitere Berichte zu: Antimaterie Elementarteilchen Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie