Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschung auf der Suche nach dem Tiefpunkt - Laserkühlung unterbindet störende Vibrationen

23.12.2004


Gesucht wird eine Technologie, um das ultimative Quantenlimit an Sensitivität zur Messung von Kraft zu erreichen. Seit einiger Zeit bereits werden Laser genutzt, um Mikrohebel, die zur Kräftemessung eingesetzt werden, zu kühlen. Prof. Dr. Khaled Karrai und seine Mitarbeiterin Constanze Höhberger Metzger vom Department für Physik der Ludwig-Maximilians-Universität (LMU) München beschreiben jetzt in der aktuellen Ausgabe der Fachzeitschrift Nature (S. 1002-1005, 2004), wie sie dem Ziel, den absoluten Temperatur-Nullpunkt zu erreichen, näher gekommen sind.



Die Wissenschaftler ließen einen Laserstrahl von einem vergoldeten, nur 460 Nanometer dicken Silikonhebel abprallen. So konnten die durch Wärme verursachten Vibrationen in dem freitragenden Hebel gedämpft werden. Der Hebel kühlte dadurch auf -255 Grad Celsius ab und lag nur mehr 18 Grad über dem absoluten Nullpunkt von -273 Grad Celsius.

... mehr zu:
»Karrai »Mikrohebel »Vibration


Diese Methode der Kühlung könnte Anwendungen finden, auch wenn sie für die Forscher nur ein erster Schritt ist. Offen ist derzeit, welche Tiefsttemperatur maximal erreicht werden kann. "Wir fragen uns, ob es möglich ist, den Mikrohebel fast bis zum absoluten Nullpunkt bei -273 Grad Celsius zu bringen", berichtet Karrai. "Diese rein mechanischen Systeme würden dann anfangen, sich quantenmechanisch zu verhalten." Die jetzt erreichbare Temperatur von -255 Grad Celsius ist noch zu hoch, um Quanteneffekte zu sehen. "Dies war aber nur unser erster Versuch", so Karrai. "Wir waren von unserem Erfolg positiv überrascht, vor allem weil wir noch sehr weit von optimalen Bedingungen zur Laserkühlung entfernt sind. Dies wollen wir jetzt verbessern. Wir arbeiten auch an neuen nanomechanischen Vorrichtungen, die dem Mikrohebel überlegen sein werden."

Diese Entdeckung steht in Einklang mit Errungenschaften der letzten Jahre. Laser können zunehmend besser genutzt werden, um die Temperatur einzelner Atome oder mehrerer Tausend Atome zu kühlen. Die Technik konnte bei festen Objekten angewandt werden, wobei es sich bei vorliegenden Experimenten nur um einen sehr kleinen freitragenden Hebel handelt. "Das ist nur ein erster Schritt", so Karrai. "Wir sind überzeugt, dass die Methode eingesetzt werden kann, um noch geringere Temperaturen zu erreichen." Temperaturbedingte Vibrationen sind die größte Störquelle bei nanomechanischen Systemen zur Kräftemessung. Die neue Methode, derartige Hebel zu kühlen, könnte den Weg zu neuen Entdeckungen, die eine höhere Sensitivität erfordern, ebnen. Ein mögliches Beispiel dafür wäre die Suche nach Gravitationswellen.

Laserlicht ist sehr energiereich. Diese Energie kann für eine kurze Zeit gespeichert werden. Gekoppelt mit einem mechanischen System, in diesem Fall der Mikrohebel, kann diesem Temperatur entzogen werden. Die Wärme, die ansonsten den Hebel vibrieren lässt, wird in Lichtintensität übertragen. Der Hebel kühlt dadurch ab. Der umgekehrte Vorgang, bei dem Lichtenergie in mechanische Energie umgewandelt und auf den Hebel übertragen wird, ist auch möglich. Dabei sehen die Forscher auch die erste mögliche Anwendung. Mechanische Energie, die in den Mikrohebel gepumpt wird, könnte bei diesem eine Dauervibration erreichen. Dies ist zwar jetzt schon mit Hilfe anderer Vorrichtungen möglich, die allerdings auf Nanoebene sehr schwer zu kontrollieren sind. In diesem Bereich könnte das neue System überlegen sein.

Ansprechpartner:

Prof. Dr. Khaled Karrai
Institut für Physik der LMU
Tel.: +49 89 2180 3725
Fax: +49 89 2180 3182
E-Mail: karrai@LMU.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Berichte zu: Karrai Mikrohebel Vibration

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Autonomes Fahren – und dann?

22.11.2017 | Verkehr Logistik

Material mit vielversprechenden Eigenschaften

22.11.2017 | Materialwissenschaften

Forscherteam am IST Austria definiert Funktion eines rätselhaften Synapsen-Proteins

22.11.2017 | Biowissenschaften Chemie