Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekültrennung mit geformten Laserpulsen

13.08.2004


Physiker entwickeln neues Verfahren, das evolutionäre Strategie nutzt

... mehr zu:
»Laserpuls »Molekül

Es war die Natur, die als Vorbild für die Entwicklung einer neuen Methode diente, mit der Moleküle und Isotope getrennt werden können. Für das patentreife Verfahren, das Experimentalphysiker an der Freien Universität Berlin entwickelt haben, wenden die Forscher evolutionäre Optimierungsstrategien an. Das Team um Dr. Albrecht Lindinger und Prof. Dr. Ludger Wöste variiert die Form der Laserpulse so lange, bis eine optimale Trennung der Moleküle erreicht wird. Diese überraschend effektive Methode erlaubt es im Prinzip, jedes Molekülgemisch ohne vorherige Kenntnis der molekularen Eigenschaften nach seinen Komponenten aufzuteilen. Praktische Anwendungen dieses gerade erst veröffentlichten Ergebnisses sind in den Bereichen Pharmazie und Medizintechnik zu erwarten. Die Erfindung ist von der Freien Universität Berlin beim Deutschen Patent- und Markenamt und gerade kürzlich auch beim US-Patentamt eingereicht worden.

Um Moleküle oder Isotope zu trennen, bedarf es oft langwieriger, komplizierter Verfahren zur räumlichen Separierung (z.B. Zentrifugentechniken), die erst nach Ausführung mehrerer Einzelschritte zum Erfolg führen. Auch die bislang verwendeten Laser-Trennmethoden mit Hilfe kontinuierlicher Strahlung, die auf kleinen spektralen Linienverschiebungen beruhen, sind relativ aufwendig, da sie auf eine genaue Kenntnis der molekularen Eigenschaften angewiesen sind. Zudem erlauben sie nur, einen gewissen Anteil des Gemisches zu trennen. Hier bietet sich der von den Forschern der Freien Universität gewählte neue Ansatz an. Sie nutzen das Laserlicht von extrem kurzen Pulsen aus, das einen breiten Spektralbereich überdeckt, und überlassen es einem evolutionären Algorithmus, die optimale Form des Laserpulses in der Zeit und Frequenz selbstständig zu finden. Auf diese Weise könnte prinzipiell jedes molekulare Gemisch ohne genaues vorheriges Wissen seiner Eigenschaften in einem Schritt separiert werden.


Das neuartige Verfahren beruht im Wesentlichen auf der Verwendung eines Pulsformers, der das La-serlicht mit Hilfe eines Gitters in seine Spektralfarben zerlegt. Der Pulsformer verzögert dann mit hoher Genauigkeit die Spektralfarben einzeln oder variiert sie in ihrer Intensität und führt sie anschließend mit einem zweiten Gitter zu einem geformten Puls zusammen. Die so erzeugten Pulse werden auf einen Molekularstrahl gerichtet und führen dort zur elektronischen Anregung und gegebenenfalls zur Ionisierung der Moleküle.

Das Ziel des speziell für diesen Zweck programmierten evolutionären Algorithmus ist es, die ge-wünschte Molekülsorte vorwiegend anzuregen, während die anderen Molekülsorten an einer effektiven Anregung gehindert werden. Dazu wendet er in einer Rückkopplungsschleife wiederholt aus der Natur bekannte Konzepte der Evolution an. So wird die dort auftretende Erzeugung von Nachkommen durch Vertauschen von Pulselementen, die Mutation durch Hinzufügen eines zufälligen Wertes und die so genannte Auslese der Besten durch Auswahl der effektivsten Pulse simuliert. Der auf diese Weise gefundene optimierte Puls nutzt geringe Unterschiede der Eigenschaften der beteiligten Molekülsorten - wie zum Beispiel hinsichtlich der energetischen Lage der Quantenzustände oder der Dauer der auftretenden Schwingungsperioden - optimal aus, um simultan alle auftretenden Zustände einer Molekülsorte selektiv anzuregen.

Ein weiterer Vorteil der vorgestellten Methode besteht darin, dass man zusätzlich durch eine Analyse der ermittelten optimalen Pulsform Einblick in den zugrunde liegenden Anregungsprozess selbst erhalten kann. Insbesondere können so Informationen über die Dynamik auf den Schwingungsniveaus der beteiligten elektronischen Zwischenzustände gewonnen werden. Wissenschaftlich besonders relevant ist dabei die Möglichkeit des zeitlich und spektral präzisen Ansprechens der einzelnen Schwingungsfunktionen durch die unterschiedlichen Pulskomponenten.

Mögliche Anwendungsfelder für diese Methode sind in der chemischen Industrie, der Pharmazie und der Medizintechnik zu erwarten. Insbesondere die Trennung von Molekülen, die mit anderen Verfahren schwer oder überhaupt nicht separierbar sind, könnte dort zum Einsatz kommen. Isotopenselektion für die in der Medizin verwendete so genannte Tracer-Methode, bei der schwach radioaktiv strahlende Substanzen in den Körper gebracht werden, ist da nur ein Beispiel von vielen.

Die Arbeitsgruppe um den Experimentalphysiker Prof. Dr. Ludger Wöste ist schon seit einiger Zeit in dem Bereich der optimalen Kontrolle tätig. Sie hat sich aber auch auf anderen Gebieten mit Patenten über das "Zähmen von Blitzen" und den "Regenwächter" einen Namen gemacht. Veröffentlichung: Phys. Rev. Lett. 93, 033001-1-4 (2004)

Weitere Informationen erteilen Ihnen gern:

Dr. Albrecht Lindinger
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-56120
E-Mail: lindin@physik.fu-berlin.de

Prof. Dr. Ludger Wöste
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-55566
E-mail: woeste@physik.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie