Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekültrennung mit geformten Laserpulsen

13.08.2004


Physiker entwickeln neues Verfahren, das evolutionäre Strategie nutzt

... mehr zu:
»Laserpuls »Molekül

Es war die Natur, die als Vorbild für die Entwicklung einer neuen Methode diente, mit der Moleküle und Isotope getrennt werden können. Für das patentreife Verfahren, das Experimentalphysiker an der Freien Universität Berlin entwickelt haben, wenden die Forscher evolutionäre Optimierungsstrategien an. Das Team um Dr. Albrecht Lindinger und Prof. Dr. Ludger Wöste variiert die Form der Laserpulse so lange, bis eine optimale Trennung der Moleküle erreicht wird. Diese überraschend effektive Methode erlaubt es im Prinzip, jedes Molekülgemisch ohne vorherige Kenntnis der molekularen Eigenschaften nach seinen Komponenten aufzuteilen. Praktische Anwendungen dieses gerade erst veröffentlichten Ergebnisses sind in den Bereichen Pharmazie und Medizintechnik zu erwarten. Die Erfindung ist von der Freien Universität Berlin beim Deutschen Patent- und Markenamt und gerade kürzlich auch beim US-Patentamt eingereicht worden.

Um Moleküle oder Isotope zu trennen, bedarf es oft langwieriger, komplizierter Verfahren zur räumlichen Separierung (z.B. Zentrifugentechniken), die erst nach Ausführung mehrerer Einzelschritte zum Erfolg führen. Auch die bislang verwendeten Laser-Trennmethoden mit Hilfe kontinuierlicher Strahlung, die auf kleinen spektralen Linienverschiebungen beruhen, sind relativ aufwendig, da sie auf eine genaue Kenntnis der molekularen Eigenschaften angewiesen sind. Zudem erlauben sie nur, einen gewissen Anteil des Gemisches zu trennen. Hier bietet sich der von den Forschern der Freien Universität gewählte neue Ansatz an. Sie nutzen das Laserlicht von extrem kurzen Pulsen aus, das einen breiten Spektralbereich überdeckt, und überlassen es einem evolutionären Algorithmus, die optimale Form des Laserpulses in der Zeit und Frequenz selbstständig zu finden. Auf diese Weise könnte prinzipiell jedes molekulare Gemisch ohne genaues vorheriges Wissen seiner Eigenschaften in einem Schritt separiert werden.


Das neuartige Verfahren beruht im Wesentlichen auf der Verwendung eines Pulsformers, der das La-serlicht mit Hilfe eines Gitters in seine Spektralfarben zerlegt. Der Pulsformer verzögert dann mit hoher Genauigkeit die Spektralfarben einzeln oder variiert sie in ihrer Intensität und führt sie anschließend mit einem zweiten Gitter zu einem geformten Puls zusammen. Die so erzeugten Pulse werden auf einen Molekularstrahl gerichtet und führen dort zur elektronischen Anregung und gegebenenfalls zur Ionisierung der Moleküle.

Das Ziel des speziell für diesen Zweck programmierten evolutionären Algorithmus ist es, die ge-wünschte Molekülsorte vorwiegend anzuregen, während die anderen Molekülsorten an einer effektiven Anregung gehindert werden. Dazu wendet er in einer Rückkopplungsschleife wiederholt aus der Natur bekannte Konzepte der Evolution an. So wird die dort auftretende Erzeugung von Nachkommen durch Vertauschen von Pulselementen, die Mutation durch Hinzufügen eines zufälligen Wertes und die so genannte Auslese der Besten durch Auswahl der effektivsten Pulse simuliert. Der auf diese Weise gefundene optimierte Puls nutzt geringe Unterschiede der Eigenschaften der beteiligten Molekülsorten - wie zum Beispiel hinsichtlich der energetischen Lage der Quantenzustände oder der Dauer der auftretenden Schwingungsperioden - optimal aus, um simultan alle auftretenden Zustände einer Molekülsorte selektiv anzuregen.

Ein weiterer Vorteil der vorgestellten Methode besteht darin, dass man zusätzlich durch eine Analyse der ermittelten optimalen Pulsform Einblick in den zugrunde liegenden Anregungsprozess selbst erhalten kann. Insbesondere können so Informationen über die Dynamik auf den Schwingungsniveaus der beteiligten elektronischen Zwischenzustände gewonnen werden. Wissenschaftlich besonders relevant ist dabei die Möglichkeit des zeitlich und spektral präzisen Ansprechens der einzelnen Schwingungsfunktionen durch die unterschiedlichen Pulskomponenten.

Mögliche Anwendungsfelder für diese Methode sind in der chemischen Industrie, der Pharmazie und der Medizintechnik zu erwarten. Insbesondere die Trennung von Molekülen, die mit anderen Verfahren schwer oder überhaupt nicht separierbar sind, könnte dort zum Einsatz kommen. Isotopenselektion für die in der Medizin verwendete so genannte Tracer-Methode, bei der schwach radioaktiv strahlende Substanzen in den Körper gebracht werden, ist da nur ein Beispiel von vielen.

Die Arbeitsgruppe um den Experimentalphysiker Prof. Dr. Ludger Wöste ist schon seit einiger Zeit in dem Bereich der optimalen Kontrolle tätig. Sie hat sich aber auch auf anderen Gebieten mit Patenten über das "Zähmen von Blitzen" und den "Regenwächter" einen Namen gemacht. Veröffentlichung: Phys. Rev. Lett. 93, 033001-1-4 (2004)

Weitere Informationen erteilen Ihnen gern:

Dr. Albrecht Lindinger
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-56120
E-Mail: lindin@physik.fu-berlin.de

Prof. Dr. Ludger Wöste
Institut für Experimentalphysik der Freien Universität Berlin
Tel.: 030 / 838-55566
E-mail: woeste@physik.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Laserpuls Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Heiße Materialien: Fachartikel zum pyroelektrischen Koeffizienten
23.05.2017 | Technische Universität Bergakademie Freiberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie