Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronen zu Licht gemacht

17.05.2004


Der Freie-Elektronenlaser am Elektronenbeschleuniger ELBE geht im Forschungszentrum Rossendorf in Betrieb


Der Freie-Elektronenlaser im FZR, dabei gut zu erkennen in der Mitte: der Undulator


Justierarbeiten an einer der beiden Spiegelkammern des FEL



Dem ehrgeizigen Projekt des Freie-Elektronenlasers am Dresdner Forschungszentrum Rossendorf (FZR) war dieser Tage der Erfolg beschieden - der Laser nahm seinen Betrieb auf und erzeugte erstmals den geplanten Laserstrahl auf der Basis von Elektronen. Hierzu muss zunächst der supraleitende Elektronenbeschleuniger ELBE ultrakurze Elektronenpakete in feinstabgestimmter Energie und Wiederholrate liefern. Diese Elektronenpakete fliegen in Vakuumrohren durch eine spezielle Magnetanordnung, Undulator genannt, werden von den abwechselnd angeordneten Magneten in eine tänzelnde Hin- und Her-Bewegung gezwungen und erzeugen so das bei den Forschern besonders begehrte Infrarotlicht. Damit werden im FZR beispielsweise Forschungsarbeiten an Halbleiterstrukturen auf der Nanometerskala möglich, die durch ein vor kurzem bewilligtes EU-Projekt im Rahmen des 6. EU-Forschungsrahmenprogramms gefördert werden.



Der Freie-Elektronenlaser ist das Sahnestück der Strahlungsquelle ELBE im Forschungszentrum Rossendorf, soll er doch den europaweit intensivsten durchstimmbaren Infrarotstrahl erzeugen. Dabei bedeutet "durchstimmbar", dass die Wellenlänge des Infrarotlichtes durch Veränderung der Elektronenenergie und der Magnetabstände im Undulator über einen weiten Bereich abstimmbar ist und je nach Untersuchungsgegenstand frei eingestellt werden kann.

Der Stolz der Ingenieure

Bei dem Prozess werden hochenergetische Elektronen in Form von Elektronenpaketen vom supraleitenden Elektronenbeschleuniger erzeugt und in den Undulator geführt. Innerhalb des Undulators zwingt das wechselseitig gepolte Magnetfeld die Elektronen zu einer "Schlängelbewegung". Durch die ständige Richtungsänderung der Flugbahn geben die Elektronen Energie in Form von elektromagnetischer Strahlung ab. Der Prozess ist allerdings hochkomplex, da der sich mit Lichtgeschwindigkeit bewegende Laserstrahl und die Elektronenpulse in der Länge von einem Drittel Millimeter und im Abstand von 77 Nanosekunden zusammengeführt werden müssen. Eine Pikosekunde entspricht dem unvorstellbar kleinen Zeitraum von 1 Millionstel einer Millionstel Sekunde, eine Nanosekunde ist lediglich um den Faktor Tausend länger. Nur das gemeinsame, tausendfache und genau zeitgleiche Durchlaufen des Undulators von immer neuen Elektronenpulsen und dem durch Spiegel reflektierten Laserlicht führt zum Erfolg. Dieser Vorgang lieferte im Forschungszentrum Rossendorf bisher Lichtpulse (Photonen) mit einer Wellenlänge von 20 Mikrometer.

Wärmestrahlung versetzt Atome in Bewegung

Diese Wellenlänge liegt im Bereich des unsichtbaren infraroten Lichts und ist in Form von Wärmestrahlung allgegenwärtig. Solch eine Strahlung kann Atome in Bewegung versetzen. Beim Freie-Elektronenlaser ist das Licht jedoch in ultrakurzen Zeitpulsen von wenigen Pikosekunden gebündelt. Licht der Wellenlänge von 20 Mikrometer schwingt mit einer Frequenz von 15 Terahertz, das ist 15 Billionen Mal in der Sekunde. Als Vergleich: 1 Terahertz entspricht 1000 Gigahertz und 1 Gigahertz wiederum kennt man aus dem täglichen Leben, da das die typische Handy-Frequenz ist.

Ultrakurze Lichtpulse in diesem Wellenlängenbereich haben große Bedeutung für die Halbleiterforschung und Biophysik. In modernen Halbleiter-Nanostrukturen kann mit diesem Licht die Bewegung von Elektronen verfolgt und analysiert werden. Da die schnellsten elektronischen Bauelemente heutzutage auch schon in den Terahertzbereich vorstoßen, wird es zunehmend wichtig, Laser in diesem Frequenzbereich zur Verfügung zu haben. So wird im Forschungszentrum Rossendorf etwa daran geforscht, kompakte Lichtquellen auf Halbleiterbasis in diesem Frequenzbereich zu entwickeln. Auch dabei wird der Freie-Elektronenlaser helfen, weil er es ermöglicht, die ablaufenden physikalischen Prozesse in derartigen Bauelementen genauestens zu untersuchen und zu verstehen.

Bio-Moleküle reagieren auf Blitze

Die besonders kurzen und scharf gebündelten "Blitze" des Freie-Elektronenlasers erlauben, an Atomen in unterschiedlichsten Molekülen kurzzeitig zu "rütteln", ohne diese gleich zu zerstören. Durch diesen Vorteil eignet sich die Infrarotstrahlung auch in besonderem Maße für Untersuchungen von Bio-Molekülen. Wie die ausgelösten Bewegungen nach solch einer Anregung wieder abklingen, hängt von den strukturellen Eigenschaften der Atomverbände ab. Dabei dient die Infrarot-Absorption einerseits als Werkzeug zur Auslösung und andererseits als Sonde zur störungsfreien Beobachtung dieser Bewegungsprozesse.

Biologisch relevante Moleküle besitzen besonders komplexe und sehr flexible Strukturen. Die Untersuchung von Strukturänderungen der Moleküle mit Hilfe des Freie-Elektronenlasers lässt einzigartige, mit anderen Methoden nicht mögliche Aussagen über Lebensprozesse zu. Der anwendungsorientierten Grundlagenforschung auf dem Gebiet der molekularen Medizin wird so ein sehr leistungsfähiges Instrument geboten, das auch zu neuen Erkenntnissen über Krankheiten und ihre Heilung beitragen soll.

Nutzung des Freie-Elektronenlasers

Schon vor dem ersten "Lasing", also der erfolgreichen Inbetriebnahme des Freie-Elektronenlasers, lag dem Forschungszentrum Rossendorf die Förderzusage der EU für die Anlage vor. Ab Herbst 2004 wird der Freie-Elektronenlaser zum Nutzerlabor für Wissenschaftler aus ganz Europa. Deren Forschungen mit der Strahlung im Infrarot auf den Gebieten Biophysik, Chemie und Halbleiterphysik werden dann von der EU finanziert. In diesem Förderprogramm sind alle führenden Synchrotronanlagen und Freie-Elektronenlaser in Europa bedacht. Der Rossendorfer Laser wird hieraus zunächst für 5 Jahre gefördert.

Ein Labor für hohe Magnetfelder wird in unmittelbarer Nähe zur Strahlungsquelle ELBE aufgebaut. Dadurch ergibt sich die spektakuläre Möglichkeit, den Infrarotstrahl vom Freie-Elektronenlaser in das Hochfeldlabor Dresden zu führen und mit den hohen Magnetfeldern zu kombinieren. Dies ist eine weltweit einzigartige Kombination und wird erstmals eine Vielzahl interessanter Untersuchungen zum Magnetismus, der Supraleitung, der Halbleiterphysik und im Bereich der Nanostrukturen ermöglichen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de

Weitere Berichte zu: Elbe Freie-Elektronenlaser Undulator Wellenlänge

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops