Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Astronomen beobachten Geburt eines Sterngiganten

13.05.2004


Die dunklen Bereiche oberhalb und unterhalb des hellen Mittelpunkts sind die Schatten der rotierende Scheibe aus Staub und Gas, die sich trichterförmig verjüngt. Die hellen Bereiche stammen von Gas, das senkrecht zur Scheibe ausgestoßen wird.


Im Omeganebel (M17), in dem sich viele neue Sterne bilden, gelang die Beobachtung. Der Sterngigant entsteht in der dunklen Wolke rechts unten im Bild, rechts des hellen Sterns.


Jahrelange Diskussion beendet. NATURE berichtet: Staubscheibe füttert auch schwere Sterne


Eine jahrelange Diskussion unter Astronomen beendet nun die spektakuläre Beobachtung eines internationalen Forscherteams um Prof. Dr. Rolf Chini (Astronomisches Institut der RUB): Die Astronomen wurden als erste "Augen"zeugen der Geburt eines Sterngiganten. Mit ihrer direkten Beobachtung im Infrarotbereich wiesen sie nach, dass sich in der Entstehung befindliche massereiche Sterne trotz des enormen Strahlungsdrucks, der schon früh von ihnen ausgeht, Gas und Staub aus ihrer Umgebung einverleiben und so wachsen. Möglich ist das durch eine spezielle Geometrie der sie umgebenden Scheibe aus Gas und Staub. Über ihre Beobachtung berichten die Forscher in der aktuellen Ausgabe des Wissenschaftsmagazins NATURE.

Kleine Sterne schlucken Staub


Die Größe von Sternen im Weltall variiert vom Winzling bis zum Giganten: Die Masse eines Sterns kann vom 0,1- bis zum 100-fachen der Masse unserer Sonne betragen. Massearme Sterne - wie auch die Sonne - bilden sich durch die Zusammenballung von Wolken aus Gas und Staub. Der sog. Protostern wächst auf diese Weise so lange, bis die Temperatur, die sich durch den Druck in seinem Inneren erhöht, ausreicht, um die Kernfusion zu zünden. Restliches Material aus der Staubwolke sammelt sich zu einer Scheibe um den Stern, aus der sich dann Planeten bilden können. Dieses Bild wurde in den letzten Jahren durch zahlreiche Beobachtungen für sonnenähnliche Sterne bestätigt.

Große Sterne sprengen ihre Hülle

Strittig war jedoch bislang, wie sich große, massereiche Sterne bilden können. Theoretische Überlegungen ergaben, dass das anders funktionieren müsste als bei massearmen: Mit zunehmender Sternmasse, die einen größeren Druck und höhere Temperaturen in einer früheren Phase des Sternwachstums mit sich bringt, setzt die Kernfusion im Inneren des Sterns früher ein. Dadurch entsteht früh ein großer sog. Strahlungsdruck, der von innen her auf den umgebenden Staub trifft und ihn auseinander treibt. "Der neue Stern sprengt so seine eigene Hülle, sodass kein Material mehr zur Oberfläche des Sterns gelangt und er eigentlich nicht mehr wachsen kann", erklärt Prof. Chini. Die Bildung von Sternen über zehn Sonnenmassen sollte daher nicht mehr möglich sein. Da es sie aber nachweislich gibt, behalfen sich die Astronomen mit verschiedenen Theorien. Als ein Ausweg wurde z. B. vorgeschlagen, dass massereiche Sterne vielleicht durch die Verschmelzung von Sternen geringerer Masse gebildet werden könnten.

Spezielle Geometrie der Staubscheibe hilft beim Wachsen

Wie es wirklich zu massereichen Sternen kommt, zeigten die Beobachtungen des Forscherteams mit einem modernen 8-Meter-Teleskop der Europäischen Südsternwarte auf dem Paranal in Chile im Infrarotbereich. Sie beobachteten, dass ein protostellares Objekt von etwa 20 Sonnenmassen von einer riesigen rotierenden Staubscheibe umgeben ist, deren spezielle Geometrie es erlaubt, ständig weiteres Material auf den Protostern zu transportieren: "Die Scheibe liegt um den Äquator des Protosterns und verjüngt sich trichterförmig von außen nach innen. Von der schmalen Seite der Scheibe aus fällt weiterhin Staub auf den Stern, etwa 30 Prozent davon gelangt bis zur Oberfläche und lässt den Stern weiter wachsen. Die restlichen 70 Prozent werden vom Strahlungsdruck ins All geschleudert," erläutert Prof. Chini. Die Staubscheibe ist über 200-mal größer als unser Sonnensystem und stellt ein Gasreservoir von wenigstens 100 Sonnenmassen dar - genügend Material, um den entstehenden Stern in einigen 1000 Jahren zu einem wahren Giganten anwachsen zu lassen.

Titelaufnahme

Rolf Chini, Vera Hoffmeister, Stefan Kimeswenger, Markus Nielbock, Dieter Nürnberger, Linda Schmidtobreick & Michael Sterzik: The birth of a massive star. In: NATURE, Bd. 430, Nr. 6988

Weitere Informationen

Prof. Dr. Rolf Chini, AIRUB, Astronomisches Institut der Ruhr-Universität Bochum, NA 7/176, 44780 Bochum, Tel. 0234/32-25802, Fax: -14412, E-Mail: chini@astro.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.astro.rub.de

Weitere Berichte zu: Nature Protostern Staubscheibe Sterngigant Strahlungsdruck

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik