Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochtemperatur-Supraleitung konventioneller als gedacht

04.05.2004


Blick in ein Infrarot-Ellipsometer. Auf einem vergoldeten Spiegel ist das Spiegelbild des Probenhalters (mit einem kleinen Kristall eines Kuprathochtemperatursupraleiters) und ein Polarisator für infrarotes Licht zu sehen.
Bild: Max-Planck-Institut für Festkörperforschung


Das Schema der Apparatur zeigt die wesentlichen Elemente der ellipsometrischen Messung. Linear polarisiertes Licht wird an der Probe reflektiert und dabei elliptisch polarisiert. Diese Änderung des Polarisationszustandes wird mit Hilfe des Polarisators (eine dünne Folie eines vergoldeten freistehenden Gitters) gemessen.
Bild: Max-Planck-Institut für Festkörperforschung


Stuttgarter Max-Planck-Wissenschaftler widerlegen mit neuer hochpräziser Messtechnik eine der bisherigen Erklärungen der Hochtemperatur-Supraleitung


Die Hochtemperatur-Supraleitung wurde erst vor siebzehn Jahren entdeckt und hat mittlerweile zahlreiche Anwendungen gefunden. Doch der ihr zugrunde liegende Mechanismus ist bis heute nicht geklärt. Forscher des Max-Planck-Instituts für Festkörperforschung in Stuttgart haben jetzt nachgewiesen, dass die Hochtemperatur-Supraleitung - entgegen den Vorhersagen einiger derzeit dominierender theoretischer Modelle - nicht auf einem unkonventionellen Paarungsmechanismus der Elektronen beruht. Das gelang mit einer hochpräzisen Messtechnik, der Infrarot-Ellipsometrie mit Hilfe von Synchrotronstrahlung, die von den Wissenschaftlern in langjähriger Arbeit eigens dazu entwickelt wurde. Die mit der Synchrotron-Strahlquelle (ANKA) am Forschungszentrum Karlsruhe gemachten Befunde legen den Schluss nahe, dass auch die Hochtemperatur-Supraleitung - in modifizierter Form - durch die bestehende Bardeen-Cooper-Schrieffer-Theorie der Supraleitung (BCS-Theorie) erklärt werden kann (Science, 30. April 2004).

Normale Metalle haben einen endlichen elektrischen Widerstand. Fließt durch sie ein Strom, so ist das mit erheblichen Verlusten verbunden. Wertvolle Energie wird dadurch in Abwärme umgewandelt, die oftmals erhebliche technische Probleme verursacht. Einige Metalle werden jedoch unterhalb einer so genannten Sprungtemperatur zu Supraleitern. Diese leiten den elektrischen Strom widerstandsfrei, also ohne Verluste. Solche Supraleiter sind bereits seit fast hundert Jahren (seit 1911) bekannt, ihre Sprungtemperatur liegt aber nur wenige Grad über dem absoluten Nullpunkt von minus 273 Grad Celsius. Da ihre Abkühlung sehr aufwändig ist, finden herkömmliche Supraleiter nur wenige Anwendungen, beispielsweise in Spulen für sehr starke magnetische Felder.


Die Entdeckung der Hochtemperatur-Supraleitung in einer Kupferoxid-Verbindung durch J.G. Bednorz und K.A. Müller im Jahre 1986 erregte deshalb sehr großes Aufsehen. Bereits im folgenden Jahr erhielten sie den Nobelpreis. Mittlerweile liegt der Rekord der Sprungtemperatur in dieser Materialklasse bei immerhin -139 °C. Diese Temperaturen kann man durch Kühlung mit flüssigem Stickstoff (-195 °C) kostengünstig und ohne großen technischen Aufwand erreichen. Das führte international zu einer regen Forschungstätigkeit, die mittlerweile zu bedeutsamen technologischen Entwicklungen geführt hat. Doch trotz der Erfolge bei der Herstellung und technischen Entwicklung dieser Materialien bleibt der dem Phänomen der Hochtemperatur-Supraleitung zugrunde liegende Mechanismus weiterhin ungeklärt.

Das ist um so erstaunlicher, als für die konventionellen Supraleiter bereits seit 1957 eine sehr detaillierte und erfolgreiche Theorie vorliegt. Der BCS-(Bardeen-Cooper-Schrieffer-) Theorie zufolge bilden zwei freie Elektronen eines Metalls unterhalb der Sprungtemperatur so genannte Cooper-Paare. Diese Elektronen-Paare haben völlig neue quantenmechanische Eigenschaften und ermöglichen den verlustfreien Stromtransport. Dem liegt ein fundamentales Symmetrieprinzip zugrunde, wonach Teilchen mit halbzahligem Spin, so genannte Fermionen, zu denen die Elektronen gehören, nicht denselben Grundzustand einnehmen können. Ganz im Gegensatz dazu können Teilchen mit ganzzahligem Spin, die Bosonen, bei tiefen Temperaturen ein und denselben Grundzustand - die Bose-Einstein-Kondensation - einnehmen. Diese wurde zu Beginn des 20. Jahrhunderts vorausgesagt und vor wenigen Jahren an ultrakalten Atomen erstmals experimentell beobachtet.

Die Elektronen in einem Metall können das für Fermionen gültige Ausschlussprinzip umgehen, indem sie Cooper-Paare bilden, die dann - wie die Bosonen - einen ganzzahligen Spin aufweisen. In der Folge gehen auch sie dann in einen kohärenten Zustand über, dessen quantenmechanische Wellenfunktion sich auch über makroskopische Dimensionen erstreckt. In diesem Zustand sind Wechselwirkungen einzelner Elektronen mit statischen oder dynamischen Defekten, die dem elektrischen Widerstand zugrunde liegen, ausgeschlossen - der Stromtransport erfolgt verlustfrei.

Das Hauptproblem bei der Bildung von Cooper-Paaren besteht nun darin, dass Elektronen eine negative elektrische Ladung besitzen und sich deshalb stark abstoßen. Damit sich Cooper-Paare bilden können, ist also eine anziehende Kraft erforderlich, die der elektrostatischen Abstoßung entgegenwirkt. In herkömmlichen Supraleitern basiert diese Kraft auf einer koordinierten Verzerrung der positiv geladenen Atomkerne, den so genannten Phononen. Diese reduzieren die elektrostatische Abstoßung bzw. heben sie sogar auf. Im Falle der Hochtemperatursupraleiter ist jedoch weitgehend erwiesen, dass die anziehende Wirkung aufgrund der Phononen viel zu schwach ist, um die extrem hohe Sprungtemperatur dieser Supraleiter zu erklären. Aus diesem Grund hat man in den letzten Jahren eine Reihe alternativer Modelle zur Erklärung der Hochtemperatur-Supraleitung entwickelt. So gehen einige konventionelle Modelle davon aus, dass die stärkere Wechselwirkung zum Beispiel über die Spinanregungen der Elektronen vermittelt werden.

Daneben bestehen aber auch mehrere unkonventionelle Modelle, die sich grundlegend von den BCS-artigen Modellen unterscheiden. Der entscheidende Unterschied betrifft den Normalzustand der Ladungsträger oberhalb der Sprungtemperatur. Im BCS-Modell geht man von schwach wechselwirkenden elektronischen Zuständen aus, welche im Sinne einer so genannten Fermi-Flüssigkeit verstanden werden können. Die unkonventionellen Modelle gehen hingegen von einer sehr starken Wechselwirkung der Elektronen aus, die bereits oberhalb der Sprungtemperatur, also im Normalzustand, gravierende Auswirkungen hat. Danach beeinträchtige diese starke Wechselwirkung die Beweglichkeit der Elektronen und führe auf diese Weise zu einer sehr ungünstigen Situation mit einer stark erhöhten kinetischen Energie der Elektronen. Der Knackpunkt dieser Modelle ist die Annahme, dass die Elektronen die für sie nachteilige Wechselwirkung vermeiden können, indem sie wiederum Cooper-Paare bilden.

Ob die Hochtemperatur-Supraleitung tatsächlich ein solch unkonventioneller Paarungsmechanismus beruht, versucht man insbesondere durch optische Untersuchungen dieser Materialien herauszufinden. Denn die kinetische Energie der Ladungsträger bestimmt auch ihre Fähigkeit, eingestrahltes Licht zu absorbieren oder zu reflektieren. Exakte Messungen der optischen Eigenschaften dieser Materialien über einen ausreichend großen Energiebereich hinweg, von möglichst niedrigen Energien im fernen Infrarot bis hin zur so genannten Plasmafrequenz der Ladungsträger im sichtbaren Spektralbereich, erlauben es, direkt auf ihre kinetische Energie zu schließen. Auf diese Weise lassen sich vor allem anomale Änderungen der kinetischen Energie als Funktion der Temperatur nachweisen, wie sie von beschriebenen unkonventionellen Theorien vorhergesagt werden.

Doch die Veränderungen in den optischen Eigenschaften der Hochtemperatur-Supraleiter können extrem klein sein. Man braucht deshalb extrem genaue Messungen, die jedoch mit herkömmlichen Methoden, wie der Reflektions- oder Transmissionsmessung, nicht möglich sind. Dafür geeignet ist die Ellipsometrie, eine Methode, mit der man nicht nur die Änderung der Intensität des einfallenden und reflektierten Lichtstrahls, sondern auch dessen Phasenverschiebung messen kann. Konkret beobachtet man damit, wie sich der Polarisationszustand linear polarisierten Lichts bei der Reflexion verändert. Im Allgemeinen ist das reflektierte Licht elliptisch polarisiert, daher der Name Ellipsometrie. Im Spektralbereich des sichtbaren Lichts ist diese Methode, welche bereits im 19. Jahrhundert von Paul Drude entwickelt wurde, seit langem etabliert und findet zahlreiche Anwendungen. Geeignete Ellipsometer sind kommerziell erhältlich.

Doch um die Änderung der kinetischen Energie der Ladungsträger bestimmen zu können, sind ellipsometrische Messungen in deutlich niedrigeren Energiebereichen bis in den Bereich des fernen Infrarot erforderlich. In diesem Spektralbereich waren präzise ellipsometrische Messungen an den vergleichsweise kleinen Proben der Hochtemperaturspraleiter bis vor kurzem nicht möglich. Erst der Forschergruppe um Christian Bernhard am Max-Planck-Institut für Festkörperforschung ist es in den letzten Jahren gelungen, ein präzises Infrarot-Ellipsometer unter Einsatz einer Synchrotron-Strahlquelle zu entwickeln, die auch im Bereich des fernen Infrarot brilliante und sehr intensive Strahlung liefert. Ein erstes Infrarot-Ellipsometer haben die Forscher an der National Synchrotron Light Source (NSLS) am Brookhaven National Laboratory in Brookhaven, USA, aufgebaut und getestet. In den letzten Jahren haben sie dann ein weiter entwickeltes Infrarot-Ellipsometer an der neu geschaffenen Synchrotron-Strahlquelle (ANKA) am Forschungszentrum Karlsruhe in Betrieb genommen.

Die Messungen mit ANKA zeigten dann, dass bei der Hochtemperatur-Supraleitung kein solch unkonventioneller Paarungsmechanismus der Elektronen vorliegt. Die ellipsometrischen Infrarotspektren stehen in klarem Widerspruch zu den Vorhersagen unkonventioneller Modelle der Hochtemperatursupraleitung. Die Messungen belegen vielmehr, dass die kinetische Energie der Ladungsträger im supraleitenden Zustand nicht anormal abgesenkt wird. Ganz im Gegenteil, die Wissenschaftler beobachteten sogar eine geringfügige Erhöhung der kinetischen Energie, wie sie von der klassischen BCS-Theorie vorhergesagt wird. Hierfür verantwortlich ist die Bindung der Elektronen zu Cooper-Paaren, welche die Beweglichkeit der individuellen Elektronen einschränkt. Im Rahmen der BCS-Theorie wird dieser Nachteil aber durch die anziehende Wechselwirkung mehr als wettgemacht.

Weitere Informationen erhalten Sie von:

PD Dr. Christian Bernhard
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: 0711 689-1742, Fax: -1632
E-Mail: c.bernhard@fkf.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise