Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Physiker filmen einzelne Atome beim Transport auf einem "Förderband"

16.12.2003


Weltweit erstmalig haben Physiker der Universität Bonn einzelne Atome gefilmt, wie sie auf einer Art Förderband aus Laserstrahlen über einen knappen zehntel Millimeter transportiert werden. Ihr spektakuläres Experiment werden sie am Montag, 15.12., in der Zeitschrift Optics Express publizieren; die Filme sind dann online auf der Internetseite http://www.opticsexpress.org/ abrufbar.



Bereits im Jahr 2000 war es der Arbeitsgruppe um Professor Dr. Dieter Meschede gelungen, einzelne Cäsiumatome für eine Dauer von etlichen Sekunden soweit abzubremsen, dass sie sich fast nicht mehr bewegten, und dann auf ein "Förderband" aus Laserstrahlen umzuladen. Auf diese Weise konnten sie die Atome um bis zu einen Zentimeter zu einem gewünschten Ziel bewegen - das ist immerhin hundert Millionen mal soviel, wie Cäsiumatome dick sind. Oder anders ausgedrückt: Wäre das Atom eine Murmel, würde das Förderband etwa von Bonn bis Rom reichen. Nun ist es den Wissenschaftlern zum ersten Mal gelungen, diesen Transportvorgang zu filmen. Dazu beleuchteten sie das Atom mit Licht einer spezifischen Farbe. Cäsium kann solches Licht absorbieren, um es wenig später blitzartig wieder abzugeben. Dieses Fluoreszenz-Licht konnten die Physiker mit einer hoch empfindlichen Kamera auffangen und so einmal pro Sekunde ein Bild vom leuchtenden Atom schießen. Hintereinander abgespielt, zeigt die Sequenz, wie sich das Cäsium-Teilchen auf seinem Förderband aus Laserstrahlen gleichmäßig zur Seite bewegt.

... mehr zu:
»Atom »Cäsiumatom »Laserstrahl »Physik


Dieses Förderband ist eine stehende Lichtwelle aus vielen Bergen und Tälern - vergleichbar vielleicht mit einem Stück Wellpappe. Die Physiker laden das Atom in eines dieser Täler und versetzen dann die Welle in Bewegung. Das Atom, in seinem Wellental eingesperrt, wandert mit. Solange es noch nicht auf dem Förderband liegt, ist es mit der Kamera als kreisrunder Fleck von einem hundertstel Millimeter Durchmesser zu erkennen, dessen Helligkeit zum Rand abnimmt. "Das Atom steht zwar fast still, aber eben nur fast", erklärt Meschede-Mitarbeiter Dominik Schrader. "Es zittert noch wahllos hin und her, daher sehen wir eine Art Scheibe." Sobald jedoch das Caesium auf das Förderband rutscht, verformt sich sein Bild zu einer länglichen Linse: Das Atom kann nun nicht mehr in alle Richtungen schwingen, sondern nur noch "im Tal" parallel zu den Wellenbergen.

Ein zweiter Film zeigt sogar drei Atome, die sich gemeinsam nach links bewegen, bis die Physiker die Richtung des Förderband umkehren. Insgesamt demonstriert das Experiment die erstaunlich Möglichkeit, einzelne Atome an einen bestimmten Ort zu transportieren. Dies eröffnet faszinierende Perspektiven und ist beispielsweise Voraussetzung für ein so genanntes "Quantengatter", an dem die Bonner Forscher bereits werkeln. Dazu wollen sie zwei Cäsiumatome mit verschiedenen "Informationen" beladen und dann gemeinsam zwischen zwei winzige Spiegel sperren. Dort sollen sie miteinander wechselwirken, also durch Abgabe und Aufnahme von Fluoreszenzlicht Informationen austauschen. Ein solches Gatter wäre der erste grundlegende Schritt zu einem Quantencomputer.

Hintergrund: Wie bringt man Atome zum Stillstand?

Atome und Moleküle bewegen sich bei Raumtemperatur etwa mit der Geschwindigkeit eines Düsenflugzeugs, bei höheren Temperaturen sogar noch schneller. Voraussetzung für den Transport per Laserstrahl sind aber ruhende Atome. Dazu müssen die Physiker sie abkühlen, sprich: ihre ungeordnete Bewegung verlangsamen. Sie beschießen die Atome daher mit sechs Laserstrahlen; jeweils zwei laufen in jeder Raumachse gegeneinander. Licht besteht zwar aus Wellen, hat aber andererseits auch Teilcheneigenschaften. Durch den Laserbeschuss können die Physiker ihr Cäsiumatom also bremsen oder beschleunigen - "die Größenverhältnisse sind dabei allerdings etwa so, als wollten Sie einen LKW mit einer Tennis-Ballwurfmaschine stoppen", erklärt der Bonner Physiker Dr. Arno Rauschenbeutel. "Trotzdem werden die Cäsiumatome in kürzester Zeit abgebremst, weil sie mit vielen Millionen Lichtteilchen pro Sekunde kollidieren."

Atome haben nun die Eigenschaft, dass sie sich von Licht bestimmter Farbe besonders gut bremsen (oder beschleunigen) lassen - ganz so, als würde der LKW auf rote Tennisbälle stärker reagieren als auf blaue. Zudem ändert Licht seine Farbe, wenn man sich auf die Quelle zubewegt oder von ihr entfernt - ähnlich, wie die Sirene eines Krankenwagens heller klingt, wenn das Fahrzeug näher kommt. "Schubst" man also ein fliegendes Atom mit einem Laserstrahl, so reagiert es auf das Lichtbombardement mehr oder weniger stark - je nachdem, ob durch die Eigenbewegung des Atoms der Laser nun eine "passendere" Farbe hat, also wirksamer ist, oder nicht. Beschießt man daher ein fliegendes Atom mit zwei Lasern geeigneter Farbe gleichzeitig von vorne und von hinten, bremst der entgegenkommende Strahl es weit effektiver ab, als der von hinten kommende Strahl ihm einen zusätzlichen Schubs verpasst: das Atom wird langsamer. Mit Hilfe dieses Dopplereffekts bremsen die Physiker ihre Cäsiumatome fast bis zum Stillstand ab. Oder anders ausgedrückt: Sie kühlen sie auf eine Temperatur, die nur 100 Millionstel Grad über dem absoluten Nullpunkt liegt.

Für das Förderband verwenden sie anschließend leistungsstarke infrarote Laserstrahlen. Die Atome kleben an diesen Strahlen wie Papierschnipsel an einem Plastiklineal, das man mit einem Tuch gerieben und elektrisch aufgeladen hat. Der Effekt ist nicht sehr stark. Er reicht bei den sehr kalten Atomen aber aus, um sie wie mit einer optischen Pinzette festzuhalten und präzise im Raum zu bewegen.

Ansprechpartner:
Professor Dr. Dieter Meschede
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-3478
E-Mail: meschede@iap.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.opticsexpress.org/
http://www.innovations-report.de/html/profile/profil-357.html

Weitere Berichte zu: Atom Cäsiumatom Laserstrahl Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Autonomes Fahren – und dann?

22.11.2017 | Verkehr Logistik

Material mit vielversprechenden Eigenschaften

22.11.2017 | Materialwissenschaften

Forscherteam am IST Austria definiert Funktion eines rätselhaften Synapsen-Proteins

22.11.2017 | Biowissenschaften Chemie