Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Können wir die dunkle Materie sehen?

09.12.2003


Verteilung der Materiedichte des simulierten Milchstraßenhalos in logarithmischer Farbskala. Eine Bildkante entspricht einer Länge von 600000 Lichtjahren. Falls zukünftige Teleskope die Annihilationsstrahlung nachweisen, dann wahrscheinlich aus einer Region im Zentrum der Galaxie die nur einige Prozent der Größe des hier gezeigten Bildes hat.


Illustration von GLAST (obere Abbildung) und VERITAS (untere Abbildung) die beide Gammastrahlenteleskope der nächsten Generation sind. (Copyright: GLAST, VERITAS Teams)


Unsere Milchstraße ist, wie die meisten anderen Spiralgalaxien auch, von einem ausgedehnten Halo unsichtbarer dunkler Materie umgeben. Der Halo ist mindestens zehnmal größer und zehnmal schwerer als Teil den wir sehen können. Wissenschaftler am Max-Planck-Institut für Astrophysik haben Supercomputersimulationen der Entwicklung eines solchen Halos durchgeführt um die zu erwartende Struktur zu verstehen. Wenn die dunkle Materie aus Neutralinos besteht, dann könnte Gammastrahlung die bei deren Selbstannihilation entsteht mit Gammastrahlenteleskopen der nächsten Generation beobachtet werden. Die Astrophysiker fanden heraus, dass das geplante Teleskop GLAST gute Möglichkeiten besitzt diese Strahlung zu entdecken und damit die Natur der dunklen Materie zu enthüllen.

... mehr zu:
»ABB »Gammastrahl »HALO »Materie

1933 untersuchte der schweizer Astronom Fritz Zwicky die Geschwindigkeiten von Galaxien in Galaxienhaufen und fand ein überraschendes Ergebnis: Die Masse der beobachteten Galaxien war viel zu gering um ihre Bewegungen in dem Galaxienhaufen zu erklären. Er schloss daraus, dass Galaxienhaufen neben den Galaxien noch aus weiterer, "dunkler" Materie bestehen.

Heute wissen wir dass etwa 90% der Gesamtmasse im Universum nicht nur dunkel ist - das heißt sie sendet kein Licht aus - sondern dass sie außerdem aus einer mysteriösen noch unbekannten Teilchenart bestehen muss. Das Geheimnis der Natur der dunklen Matiere im Universum zu lüften ist eine der größten Herausforderungen der heutigen Kosmologie.


Einer der besten Teilchenkandidaten für die dunkle Materie ist ein Teilchen, das Neutralino genannt wird. Dieses Teilchen tritt auf natürliche Weise in Theorien auf, die das Standardmodell der Teilchenphysik erweitern. Diese supersymmetrischen Theorien führen eine neue Symmetrie ein - die Supersymmetrie -, die jedem Boson ein neues supersymmetrisches Fermion zuordnet, und umgekehrt. Bisher wurde noch keines der neuen Teilchen entdeckt. Es wird angenommen dass diese Teilchen zu große Energien besitzen als dass sie mit heutigen Teilchenbeschleunigern nachgewiesen werden könnten.

Die Neutralinos könnten jedoch mit sich selbst annihilieren wenn sie in dichten Regionen des Universums aufeinandertreffen und neben weiteren Teilchen auch hochenergetische Gammastrahlung produzieren. Die Idee ist nun zu versuchen diese Gammastrahlung nachzuweisen und so schliesslich die Natur des Teilchens der dunklen Materie und seine Masse zu bestimmen. Die Stärke der Annihilation der dunklen Materie hängt sehr stark von der Dichte der dunklen Matreie und damit von der genauen Struktur der Halos die unsere und andere Galaxien umgeben ab. Das Hauptaugenmerk für den Nachweis liegt dabei auf unserer Milchstraße, vorallem da ihr Zentrum "nur" etwa 26000 Lichtjahre entfernt ist.

Die Wissenschaftlergruppe am MPA hat große Supercomputer des Garchinger Rechenzentrums der Max-Planck-Gesellschaft verwendet um die Entstehung eines Halos aus dunkler Materie ähnlich zu unserem eigenen mit bis jetzt unerreichter Auflösung zu simulieren (Abb 1). Sie haben für unterschiedliche Parameter der supersymmetrischen Theorie die erwartete Stärke der Gammastrahlung berechnet und diese mit den Nachweisgrenzen zweier Gammastrahlenteleskope der nächsten Generation verglichen. Eines dieser Teleskope ist ein Satellit (Abb 2. obere Illustration: The Gamma Ray Large Area Space Telescope GLAST) das andere ein erdgebundenes Teleskop (Abb 2. untere Illustration: Very Energetic Radiation Imaging Telescope Array System VERITAS).

Sie fanden heraus, dass, mittels einer neuen Nachweisstrategie die nach Gammastrahlung aus einem grossen Bereich zehn oder zwanzig Grad vom galaktischen Zentrum entfernt sucht, GLAST eine gute Chance haben wird die Gammastrahlen zu entdecken (Abb 3). Wir könnten endlich in der Lage sein die dunkle Materie zu "sehen" und ihre immer noch mysteriöse Natur zu enthüllen.

Felix Stoehr | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Berichte zu: ABB Gammastrahl HALO Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie