Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Können wir die dunkle Materie sehen?

09.12.2003


Verteilung der Materiedichte des simulierten Milchstraßenhalos in logarithmischer Farbskala. Eine Bildkante entspricht einer Länge von 600000 Lichtjahren. Falls zukünftige Teleskope die Annihilationsstrahlung nachweisen, dann wahrscheinlich aus einer Region im Zentrum der Galaxie die nur einige Prozent der Größe des hier gezeigten Bildes hat.


Illustration von GLAST (obere Abbildung) und VERITAS (untere Abbildung) die beide Gammastrahlenteleskope der nächsten Generation sind. (Copyright: GLAST, VERITAS Teams)


Unsere Milchstraße ist, wie die meisten anderen Spiralgalaxien auch, von einem ausgedehnten Halo unsichtbarer dunkler Materie umgeben. Der Halo ist mindestens zehnmal größer und zehnmal schwerer als Teil den wir sehen können. Wissenschaftler am Max-Planck-Institut für Astrophysik haben Supercomputersimulationen der Entwicklung eines solchen Halos durchgeführt um die zu erwartende Struktur zu verstehen. Wenn die dunkle Materie aus Neutralinos besteht, dann könnte Gammastrahlung die bei deren Selbstannihilation entsteht mit Gammastrahlenteleskopen der nächsten Generation beobachtet werden. Die Astrophysiker fanden heraus, dass das geplante Teleskop GLAST gute Möglichkeiten besitzt diese Strahlung zu entdecken und damit die Natur der dunklen Materie zu enthüllen.

... mehr zu:
»ABB »Gammastrahl »HALO »Materie

1933 untersuchte der schweizer Astronom Fritz Zwicky die Geschwindigkeiten von Galaxien in Galaxienhaufen und fand ein überraschendes Ergebnis: Die Masse der beobachteten Galaxien war viel zu gering um ihre Bewegungen in dem Galaxienhaufen zu erklären. Er schloss daraus, dass Galaxienhaufen neben den Galaxien noch aus weiterer, "dunkler" Materie bestehen.

Heute wissen wir dass etwa 90% der Gesamtmasse im Universum nicht nur dunkel ist - das heißt sie sendet kein Licht aus - sondern dass sie außerdem aus einer mysteriösen noch unbekannten Teilchenart bestehen muss. Das Geheimnis der Natur der dunklen Matiere im Universum zu lüften ist eine der größten Herausforderungen der heutigen Kosmologie.


Einer der besten Teilchenkandidaten für die dunkle Materie ist ein Teilchen, das Neutralino genannt wird. Dieses Teilchen tritt auf natürliche Weise in Theorien auf, die das Standardmodell der Teilchenphysik erweitern. Diese supersymmetrischen Theorien führen eine neue Symmetrie ein - die Supersymmetrie -, die jedem Boson ein neues supersymmetrisches Fermion zuordnet, und umgekehrt. Bisher wurde noch keines der neuen Teilchen entdeckt. Es wird angenommen dass diese Teilchen zu große Energien besitzen als dass sie mit heutigen Teilchenbeschleunigern nachgewiesen werden könnten.

Die Neutralinos könnten jedoch mit sich selbst annihilieren wenn sie in dichten Regionen des Universums aufeinandertreffen und neben weiteren Teilchen auch hochenergetische Gammastrahlung produzieren. Die Idee ist nun zu versuchen diese Gammastrahlung nachzuweisen und so schliesslich die Natur des Teilchens der dunklen Materie und seine Masse zu bestimmen. Die Stärke der Annihilation der dunklen Materie hängt sehr stark von der Dichte der dunklen Matreie und damit von der genauen Struktur der Halos die unsere und andere Galaxien umgeben ab. Das Hauptaugenmerk für den Nachweis liegt dabei auf unserer Milchstraße, vorallem da ihr Zentrum "nur" etwa 26000 Lichtjahre entfernt ist.

Die Wissenschaftlergruppe am MPA hat große Supercomputer des Garchinger Rechenzentrums der Max-Planck-Gesellschaft verwendet um die Entstehung eines Halos aus dunkler Materie ähnlich zu unserem eigenen mit bis jetzt unerreichter Auflösung zu simulieren (Abb 1). Sie haben für unterschiedliche Parameter der supersymmetrischen Theorie die erwartete Stärke der Gammastrahlung berechnet und diese mit den Nachweisgrenzen zweier Gammastrahlenteleskope der nächsten Generation verglichen. Eines dieser Teleskope ist ein Satellit (Abb 2. obere Illustration: The Gamma Ray Large Area Space Telescope GLAST) das andere ein erdgebundenes Teleskop (Abb 2. untere Illustration: Very Energetic Radiation Imaging Telescope Array System VERITAS).

Sie fanden heraus, dass, mittels einer neuen Nachweisstrategie die nach Gammastrahlung aus einem grossen Bereich zehn oder zwanzig Grad vom galaktischen Zentrum entfernt sucht, GLAST eine gute Chance haben wird die Gammastrahlen zu entdecken (Abb 3). Wir könnten endlich in der Lage sein die dunkle Materie zu "sehen" und ihre immer noch mysteriöse Natur zu enthüllen.

Felix Stoehr | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpa-garching.mpg.de

Weitere Berichte zu: ABB Gammastrahl HALO Materie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy