Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristall aus Goldpartikeln fängt das Licht

19.11.2003


Physiker der Universität Bonn haben in Zusammenarbeit mit dem Max-Planck-Institut für Festkörperforschung in Stuttgart und der Universität Moskau ein neues Quasiteilchen entdeckt und im Detail studiert (A. Christ et al., Phys. Rev. Lett. 91, 183901). Dazu nutzten sie einen Kristall aus kleinen Golddrähten, in dem sie Lichtteilchen gewissermaßen einsperrten. In derartigen "photonischen Kristallen" verbindet das Licht gewissermaßen die Golddrähte miteinander; mit ihnen könnte man daher beispielsweise mikroskopisch kleine Lichtleiter-Bauelemente herstellen, wie sie unter anderem für die Telekommunikation benötigt werden.

... mehr zu:
»Glasfaser »Kristall »Lichtleiter »Physik

Licht von einem Ort zum anderen zu schicken, ist eigentlich kein Problem - mit Glasfasern geht das ganz vorzüglich über Tausende von Kilometern. Schwierig wird es nur, wenn man sehr kleine Lichtleiter benötigt. So kann ein einziges Glasfaserkabel zur selben Zeit viele Tausend verschiedene Telefonate transportieren. Um diesen Datenwust aufzudröseln, benötigt man heute noch jede Menge raumgreifender Technik. Will man die miniaturisieren, braucht man ganz andere Lichtleiter, als sich heute realisieren lassen.

"Wenn es um Größenordnungen im Nano-Maßstab geht, sind Glasfasern einfach zu groß, und man versucht es besser mit Photonischen Kristallen", erklärt Professor Dr. Harald Gießen vom Bonner Institut für Angewandte Physik. Das Prinzip ist einfach: Bestrahlt man nanostrukturiertes Gold mit einem Laser, so beginnen die Elektronen in dem Edelmetall, mit der Frequenz des Lichtes hin und her zu schwappen - "genau wie Wasser in einem Glas", erklärt der Physiker. Dabei speichert das Goldteilchen die eingestrahlte Energie, kann sie aber auch in Form von Licht wieder abgeben. Das funktioniert besonders gut, wenn die Goldpartikel sehr klein sind - im Bonner Experiment maßen sie lediglich 100 Nanometer, das ist nur der 300ste Teil einer Haaresbreite. Stellt man nun viele dieser "Nano-Golddrähte" in geeignetem Abstand auf einen Lichtleiter (im Prinzip eine Art Glasfaser), so kann das Licht von Golddraht zu Golddraht wandern.


Der Grund dafür ist ein Effekt, den die Physiker "Kopplung" nennen. "Nimmt man zum Beispiel zwei Pendel, die unterschiedlich lang sind, so wird jedes eine eigene Schwingungsdauer besitzen. Verbindet man aber die beiden Pendel mit einer Feder, koppelt sie also zusammen, so werden die beiden Pendel mit einer anderen Dauer schwingen", erklärt Professor Gießen: Die beiden Pendel verhalten sich nicht mehr wie einzelne Systeme, sondern wie ein neues, gemeinsames System. Die Veränderung der Schwingungsdauer gegenüber dem ungekoppelten System ist ein Maß für die Stärke der Kopplung.

"In der Physik ist es nun ganz oft so, dass Licht und Materie zu etwas Neuem koppeln", so der Physiker weiter. "Nimmt man zum Beispiel ein Atom und bringt es zwischen zwei Spiegel, wo Lichtteilchen, also Photonen, hin und her laufen können, wird das gemeinsame System aus Atom und Photon ganz neue Eigenschaften bekommen." Dieses gemeinsame System nennt der Physiker dann "Quasiteilchen". Ein solches Quasiteilchen, Polariton genannt, beobachteten die Forscher auch in ihrem Photonischen Kristall. "Der Laserstrahl wird eben nicht im Goldpartikel als elektronische Energie gespeichert, sondern wieder in Licht umgewandelt und so an das nächste Goldpartikel verschickt", erklärt Professor Gießen. "Das Polariton ist gewissermaßen beides zur gleichen Zeit - elektronische Energie und Licht." Die Kopplung in dem Photonischen Kristall ist die stärkste, die bislang beobachtet wurde. "Daher kann der Kristall das Licht auch so gut fangen und weiterleiten."

Die metallischen photonischen Kristalle sind erst in den letzten Monaten ins Visier der Forscher gerückt. Experten prognostizieren ihnen aber schon jetzt eine große Zukunft in der Nano-Optik. Theoretiker sagen außerdem voraus, dass diese neuartigen Materialien einen negativen Brechungsindex haben können. Das heißt, dass sie Licht im Vergleich zu Glas in die entgegengesetzte Richtung brechen. Dies würde eine ganze Reihe von neuartigen Phänomenen und Anwendungen mit sich bringen.

Ansprechpartner:
Professor Dr. Harald Gießen
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228-73-3459
E-Mail: giessen@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Glasfaser Kristall Lichtleiter Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik