Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Highlight in der Quantenphysik

16.06.2003



Licht leuchtet durch lichtundurchlässige Materie - wenn bestimmte Bedingungen geschaffen werden. Mit dem Nachweis einer zusätzlichen Bedingung erweitern Wissenschaftler der Technischen Universität Graz die Möglichkeiten der Steuerung revolutionärer optischer Bauelemente durch Licht.

... mehr zu:
»Elektron »FWF »Lichtwelle »Quantenphysik

Das vom Wissenschaftsfonds FWF geförderte Projekt beweist die experimentelle Umsetzbarkeit eines bisher nur theoretisch berechneten Effektes. Die Reihe internationaler Erfolgsmeldungen aus der österreichischen Quantenphysik wird damit beeindruckend fortgesetzt - ein Erfolg, der auch dank anhaltender Unterstützung durch den FWF ermöglicht wurde.

Materialien "schlucken" (absorbieren) Licht, wenn deren Elektronen auf die Schwingungsfrequenz der Lichtwellen reagieren. Die Energie des eingestrahlten Lichts wird dabei vom Material in Bewegungsenergie umgewandelt. Wird diese Schwingung der Elektronen aber verhindert, dann läuft das Licht ungehindert weiter - das Material wird transparent.


"Eine Möglichkeit die Schwingungen zu verhindern, ist das gleichzeitige Einstrahlen von zwei unterschiedlichen Laserstrahlen. Jeder Strahl für sich kann absorbiert werden, aber die simultane Einstrahlung beider Strahlen bringt die Atome des Materials in einen Zustand, in dem die Elektronen schließlich weder auf die Schwingung der ersten noch der zweiten Lichtwelle reagieren können", erklärt Prof. Laurentius Windholz vom Institut für Experimentalphysik der TU Graz.

Dieser Effekt wird "Elektromagnetisch induzierte Transparenz (EIT)" genannt und ist von der Frequenz (bzw. Farbe) und der Intensität der Lichtwellen abhängig. Für bestimmte Fälle war bisher berechnet worden, dass auch die Phasen der Lichtwellen - also die relative Lage der Wellentäler und -spitzen zueinander - diesen Effekt beeinflussen können. Nun gelang dem Team um Prof. Windholz erstmals auch der experimentelle Beweis.

Die Forscher untersuchten Systeme, bei denen drei oder vier Laserstrahlen mit unterschiedlicher Frequenz eingesetzt wurden. Das Laserlicht wurde auf eine mit Natrium-Dampf gefüllte Zelle gestrahlt, die das Licht für gewöhnlich bei einer Wellenlänge von 596 nm absorbiert. Diese Absorption konnte nun durch gleichzeitiges Einstrahlen von vier Laserstrahlen mit geringen Frequenzunterschieden deutlich vermindert werden. Zusätzlich konnte Prof. Windholz belegen, dass der Effekt von den Phasen der Lichtwellen abhing.

"Wir untersuchen hier sehr grundlegende Aspekte einer noch zu entwickelnden Technologie", erläutert Prof. Windholz seine Arbeit. "Wenn wir in Zukunft Bauteile in der Optoelektronik durch rein optische und damit schnellere Elemente ersetzen wollen, müssen wir die Wechselwirkungen von Licht mit Materie noch besser verstehen. So könnte die von den Lichtphasen abhängige Elektromagnetisch induzierte Transparenz z.B. elektrische Schaltelemente, wie sie in Computer-Chips verwendet werden, revolutionieren und durch schnellere optische Schalter ersetzen."

Das Projekt von Prof. Windholz reiht sich in eine Serie von Erfolgsmeldungen ein, die in den letzten Monaten den international hervorragenden Ruf der österreichischen Quantenphysik bestätigen: Zwei Titelgeschichten während der letzten neun Monate im britischen Wissenschaftsmagazin "Nature"*, sowie die Berufung des österreichisch-ungarischen Physikers Ferenc Krausz auf den Direktorstuhl des Max-Planck-Instituts für Quantenoptik in Deutschland.

Dr. Laurenz Niel, Physiker und Leiter der Abteilung Öffentlichkeitsarbeit des FWF, sieht diese Erfolge auch als Bestätigung der strengen Auswahlkriterien des Wissenschaftsfonds. Die Qualität der Forschung steht dabei an oberster Stelle: "Wir haben in den letzten drei Jahren über 45 Projekte im Bereich Quantenphysik gefördert. Natürlich freuen wir uns - und sind ein bisschen stolz -, dass diese Unterstützung den international hervorragenden Ruf eines interessanten Bereiches der österreichischen Grundlagenforschung weiter verbessert."

Kontakt:

A.o. Univ.-Prof. Dr. Laurentius Windholz
Institut für Experimentalphysik
Technische Universität Graz
Petersgasse 16
8010 Graz, Austria
Telefon: +43-316-873-8144
E-Mail: windholz@tugraz.at

Prof. Dr. Laurentius Windholz | TU Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Berichte zu: Elektron FWF Lichtwelle Quantenphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik