Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Getreten und geschüttelt: Maßgeschneiderte ultrakurze Lichtpulse für ultrakleine Löcher

14.02.2008
Kasseler Nanowissenschaftlern ist es nun gelungen, mittels maßgeschneiderten Laserpulsen winzigste Löcher in hartes durchsichtiges Material zu bohren.

Ultrakurze Laserpulse haben sich zu einem einzigartigen Werkzeug für die Laserbearbeitung von Materialien entwickelt.

Dabei reichen die Anwendungsgebiete von der Nanozellchirurgie bis hin zur Mikro- und Nanomaterialbearbeitung extrem harter Materialien. Kasseler Nanowissenschaftlern ist es nun gelungen, mittels maßgeschneiderten Laserpulsen winzigste Löcher in hartes durchsichtiges Material zu bohren. Dabei haben sie die traditionellen Gesetze der Optik überlistet und in Quarz sowie Saphir Löcher erzeugt mit der unglaublichen "Größe" von einem zehntel der mikroskopischen Auflösung.

Die Laserbearbeitung durchsichtiger Materialien beruht auf einer kurzfristigen Metallisierung des Materials, das anschließend explodiert. Diese Metallisierung, das heißt das Schaffen so genannter freier Elektronen, kann auf zwei verschiedenen Wegen erreicht werden: Entweder werden die Elektronen mit einem kurzen aber kräftigen Tritt freigesetzt oder sie werden so lange geschüttelt, bis sie mit anderen Elektronen eine Lawine auslösen. Diesen Trick mit dem "Tritt und dem Schütteln" haben die Kasseler Physiker dem Lichtpuls beigebracht. Könnte man dieses Licht hörbar machen, würde man ein kurzes intensives Knacken gefolgt von einem längeren Rauschen hören.

Die Physiker um Prof. Dr. Thomas Baumert und PD Dr. Matthias Wollenhaupt haben nun herausgefunden, dass zur Locherzeugung weniger Energie gebraucht wird, wenn die Elektronen zuerst "getreten" und dann "geschüttelt" werden als in umgekehrter Reihenfolge. Dieses Verhalten konnten sie mit Hilfe eines theoretischen Modells bestätigen, das von Frau Dr. Bärbel Rethfeld (Universität Kaiserslautern) entwickelt wurde.

Die Überraschung kam, als die Forscher ihre Löcher genauer anschauten: Die Löcher waren wesentlich kleiner als bisher von Lasern erzeugte Löcher, die nur durch "Treten" oder nur durch "Schütteln" der Elektronen entstehen. Zudem wurde die für mögliche Anwendungen wichtige Eigenschaft beobachtet, dass die Lochentstehung sich sehr tolerant in Bezug auf die angebotene Laserenergie verhält.

Die Physiker haben ihre Arbeit in der renommierten Zeitschrift "OPTICS EXPRESS" veröffentlicht: L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran and T. Baumert
"Control of ionization processes in high band gap materials via tailored femtosecond pulses"

OPTICS EXPRESS, 2007, Vol. 15, No. 26, 17855

Info
Universität Kassel
Prof. Dr. Frank Träger
Center for Interdisciplinary Nanostructure Science and Technology (CINSaT)
tel: (0561) 804 4500
fax (0561) 804 4518
e-mail: traeger@physik.uni-kassel.de

Ingrid Hildebrand | idw
Weitere Informationen:
http://www.uni-kassel.de

Weitere Berichte zu: Laserpuls Lichtpuls Nanowissenschaftler

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise