Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2000 mal feiner als ein Haar: Jenaer Wissenschaftler schneiden mit gebündeltem Licht

18.12.2007
Schnitte ausführen, die fast 2000 mal feiner sind als die Breite eines Haares, Löcher bohren, die nur Millionstel Millimeter klein sind - das ermöglicht NanoCut, eine neuartige Technologie, die PD Wolfgang Fritzsche vom Institut für Photonische Technologien (IPHT) Jena gemeinsam mit seinem Kollegen Prof. Dr. Karten Koenig von der Saar-Universität und der Firma JenLab GmbH entwickelt hat. Die Zeitschrift "Nature Nanotechnology" kürte das Verfahren zum Forschungshighlight des Jahres 2007.

Laser gestatten es, große Energiemengen in einem extrem kleinen Punkt zu bündeln. Die auf diesen Punkt konzentrierte Energie verdampft die Materie an dieser Stelle, gleichgültig ob es sich dabei um Metall, Diamant, ein Haar, oder biologische Gewebe handelt. Auf diese Weise kann man mit der Energie des Laserlichtes schneiden, bohren und gravieren.

Auch menschliche Zellen oder gar einzelne Chromosomen lassen sich so mit Laserlicht bearbeiten. Bisher waren dem Schneiden mit Licht durch die Fokussierung des Laserstrahls jedoch Grenzen gesetzt. Kleiner als etwa 100 Nanometer konnte der Durchmesser eines mit dem Laser gebohrten Loches nicht sein. Wolfgang Fritzsche entwickelte nun ein Verfahren, das die Energie des Lasers auf einen Punkt bündelt, der noch erheblich kleiner ist. Er nutzt kleinste Metall-Teilchen, so genannte Nanopartikel, als Antennen, die das Laserlicht einfangen. Extrem kurze Lichtimpulse reichen aus, um ein solches Teilchen anzuregen, dieses zu erwärmen und damit ein präzises Loch in das Gewebe zu brennen. Die Größe dieses Loches hängt nun von der Größe des Nanopartikels ab und nicht mehr von der Wellenlänge des Laserstrahls. Sie kann deshalb prinzipiell von vorher rund 100 Nanometern auf 10 oder gar 5 Nanometer verringert werden.

"Wir können dabei unsere Nanopartikel so markieren, dass sie an eine von uns ausgewählte Stelle auf dem Chromosom binden", erläutert Fritzsche. Das ermöglicht es zum Beispiel, gezielt Bereiche des Erbgutes, die einen genetischen Defekt tragen, auszuschalten. Die Wissenschaftler sprechen vom "optischen Knockout". "Wir können dabei auch parallel arbeiten", nennt Fritzsche einen weiteren Vorteil seiner Methode, "und verschiedene Stellen im Erbgut auswählen, an die dann gleichzeitig jeweils maßgeschneiderte Nanopartikel andocken können. Das restliche Chromosom bleibt völlig unverändert, das ist ebenfalls sehr wichtig."

... mehr zu:
»Laser »Laserlicht »Nanometer »Nanopartikel

Die von Fritzsche und seinem Team am IPHT verwendeten Metall-Nanopartikel sind nur wenige Milliardstel Meter groß (Der Durchmesser eines Haares ist im Vergleich dazu etwa 50.000 mal größer) und aus Metallen wie Gold oder Silber. Maßgeschneiderte Partikel, die mit ausgewählten biologischen Eigenschaften, zum Beispiel der Bindungsfähigkeit an bestimmte Erbgutabschnitte oder Proteine versehen sind, können nicht nur wie beschrieben als Lichtantennen, sondern auch aus Sensoren in lebenden Geweben eingesetzt werden. "Damit haben wir eine neue Generation photonischer Werkzeuge im Nanomaßstab in der Hand", so Fritzsche, "die ganz neue Ansätze in der Markierung und Untersuchung biologischer Proben erlauben."

Das Verfahren "NanoCut" eröffnet neue therapeutische Möglichkeiten. So könnte man die Hülle von Zellen anbohren, um sie für Medikamente durchlässiger machen. Auch in der Tumor-, Neuro- oder Augenchirurgie sehen die Forscher aus Jena und Saarbrücken Anwendungsfelder ihrer Methode.

Die Forschungsergebnisse sind in der renommierten Fachzeitschrift "Nano Letters" erschienen:

Csaki, A. et al: "A parallel approach for subwavelenght molecular surgery using gene specific positioned metal nanoparticles as laser light antennas". Nano Lett 2(2007) 247 - 253

Hintergrund:
Nanopartikel bezeichnen einen Verbund von wenigen bis einigen tausend Atomen oder Molekülen. Der Begriff "Nano" leitet sich aus dem Griechischen "nanos", der Zwerg, ab. 1 Nanometer ent¬spricht 1 Milliardstel Meter. Nanopartikel können unterschiedlicher chemischer Natur sein. Sowohl anorga¬nische als auch organische Nano¬partikel sind bekannt. Sie können aus nur einem Element bestehen, z. B. aus Metall oder Kohlenstoff oder aus Verbindungen, wie Oxide, Nitride usw.

Nanopartikel sind äußerst reaktionsfreudig und verbinden sich rasch mit allem, was in der Nähe ist. Dafür sind die äußerst zahlreichen Oberflächenatome verantwortlich, die ihre "Bindungsarme" ausstrecken.

Ihr Ansprechpartner:
PD Dr. Wolfgang Fritzsche
Abteilung Nanobiophotonik
Telefon +49 (0) 3641 / 206-304
Telefax +49 (0) 3641 / 206-399
wolfgang.fritzsche@ipht-jena.de

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de

Weitere Berichte zu: Laser Laserlicht Nanometer Nanopartikel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie