Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2000 mal feiner als ein Haar: Jenaer Wissenschaftler schneiden mit gebündeltem Licht

18.12.2007
Schnitte ausführen, die fast 2000 mal feiner sind als die Breite eines Haares, Löcher bohren, die nur Millionstel Millimeter klein sind - das ermöglicht NanoCut, eine neuartige Technologie, die PD Wolfgang Fritzsche vom Institut für Photonische Technologien (IPHT) Jena gemeinsam mit seinem Kollegen Prof. Dr. Karten Koenig von der Saar-Universität und der Firma JenLab GmbH entwickelt hat. Die Zeitschrift "Nature Nanotechnology" kürte das Verfahren zum Forschungshighlight des Jahres 2007.

Laser gestatten es, große Energiemengen in einem extrem kleinen Punkt zu bündeln. Die auf diesen Punkt konzentrierte Energie verdampft die Materie an dieser Stelle, gleichgültig ob es sich dabei um Metall, Diamant, ein Haar, oder biologische Gewebe handelt. Auf diese Weise kann man mit der Energie des Laserlichtes schneiden, bohren und gravieren.

Auch menschliche Zellen oder gar einzelne Chromosomen lassen sich so mit Laserlicht bearbeiten. Bisher waren dem Schneiden mit Licht durch die Fokussierung des Laserstrahls jedoch Grenzen gesetzt. Kleiner als etwa 100 Nanometer konnte der Durchmesser eines mit dem Laser gebohrten Loches nicht sein. Wolfgang Fritzsche entwickelte nun ein Verfahren, das die Energie des Lasers auf einen Punkt bündelt, der noch erheblich kleiner ist. Er nutzt kleinste Metall-Teilchen, so genannte Nanopartikel, als Antennen, die das Laserlicht einfangen. Extrem kurze Lichtimpulse reichen aus, um ein solches Teilchen anzuregen, dieses zu erwärmen und damit ein präzises Loch in das Gewebe zu brennen. Die Größe dieses Loches hängt nun von der Größe des Nanopartikels ab und nicht mehr von der Wellenlänge des Laserstrahls. Sie kann deshalb prinzipiell von vorher rund 100 Nanometern auf 10 oder gar 5 Nanometer verringert werden.

"Wir können dabei unsere Nanopartikel so markieren, dass sie an eine von uns ausgewählte Stelle auf dem Chromosom binden", erläutert Fritzsche. Das ermöglicht es zum Beispiel, gezielt Bereiche des Erbgutes, die einen genetischen Defekt tragen, auszuschalten. Die Wissenschaftler sprechen vom "optischen Knockout". "Wir können dabei auch parallel arbeiten", nennt Fritzsche einen weiteren Vorteil seiner Methode, "und verschiedene Stellen im Erbgut auswählen, an die dann gleichzeitig jeweils maßgeschneiderte Nanopartikel andocken können. Das restliche Chromosom bleibt völlig unverändert, das ist ebenfalls sehr wichtig."

... mehr zu:
»Laser »Laserlicht »Nanometer »Nanopartikel

Die von Fritzsche und seinem Team am IPHT verwendeten Metall-Nanopartikel sind nur wenige Milliardstel Meter groß (Der Durchmesser eines Haares ist im Vergleich dazu etwa 50.000 mal größer) und aus Metallen wie Gold oder Silber. Maßgeschneiderte Partikel, die mit ausgewählten biologischen Eigenschaften, zum Beispiel der Bindungsfähigkeit an bestimmte Erbgutabschnitte oder Proteine versehen sind, können nicht nur wie beschrieben als Lichtantennen, sondern auch aus Sensoren in lebenden Geweben eingesetzt werden. "Damit haben wir eine neue Generation photonischer Werkzeuge im Nanomaßstab in der Hand", so Fritzsche, "die ganz neue Ansätze in der Markierung und Untersuchung biologischer Proben erlauben."

Das Verfahren "NanoCut" eröffnet neue therapeutische Möglichkeiten. So könnte man die Hülle von Zellen anbohren, um sie für Medikamente durchlässiger machen. Auch in der Tumor-, Neuro- oder Augenchirurgie sehen die Forscher aus Jena und Saarbrücken Anwendungsfelder ihrer Methode.

Die Forschungsergebnisse sind in der renommierten Fachzeitschrift "Nano Letters" erschienen:

Csaki, A. et al: "A parallel approach for subwavelenght molecular surgery using gene specific positioned metal nanoparticles as laser light antennas". Nano Lett 2(2007) 247 - 253

Hintergrund:
Nanopartikel bezeichnen einen Verbund von wenigen bis einigen tausend Atomen oder Molekülen. Der Begriff "Nano" leitet sich aus dem Griechischen "nanos", der Zwerg, ab. 1 Nanometer ent¬spricht 1 Milliardstel Meter. Nanopartikel können unterschiedlicher chemischer Natur sein. Sowohl anorga¬nische als auch organische Nano¬partikel sind bekannt. Sie können aus nur einem Element bestehen, z. B. aus Metall oder Kohlenstoff oder aus Verbindungen, wie Oxide, Nitride usw.

Nanopartikel sind äußerst reaktionsfreudig und verbinden sich rasch mit allem, was in der Nähe ist. Dafür sind die äußerst zahlreichen Oberflächenatome verantwortlich, die ihre "Bindungsarme" ausstrecken.

Ihr Ansprechpartner:
PD Dr. Wolfgang Fritzsche
Abteilung Nanobiophotonik
Telefon +49 (0) 3641 / 206-304
Telefax +49 (0) 3641 / 206-399
wolfgang.fritzsche@ipht-jena.de

Susanne Liedtke | idw
Weitere Informationen:
http://www.ipht-jena.de

Weitere Berichte zu: Laser Laserlicht Nanometer Nanopartikel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie