Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Außerirdische Farbenvielfalt: Wie erkennt man Leben auf anderen Planeten?

17.03.2015

Astronomen und Biologen unter der Leitung des MPIA-Doktoranden Siddharth Hegde haben die "chemischen Fingerabdrücke" von 137 verschiedenen Spezies von Mikroorganismus bestimmt. Das Ergebnis soll in Zukunft dabei helfen, Leben auf der Oberfläche von Exoplaneten nachzuweisen.

Die Organismen stammen aus den unterschiedlichsten Lebensräumen, und einige von ihnen sind an extreme Umweltbedingungen angepasst. Das erlaubt eine erste vorsichtige Abschätzung der möglichen Farbenvielfalt von Lebensformen auf Exoplaneten. Die Ergebnisse sind als Online-Datenbank und in den Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.


Acht der 137 Proben von Mikroorganismen, die genutzt wurden, um die charakteristischen Farben für den Katalog zusammenzustellen. Jeweils oben Probenfoto, unten Mikrofotografie.

Bild: S. Hegde et al. / MPIA

Astronomen und Biologen haben sich zusammengetan, um eine neue Suchstrategie für Leben auf Exoplaneten (also Planeten außerhalb unseres eigenen Sonnensystems) zu entwickeln. Bisherige Strategien hatten sich auf indirekte Spuren von Leben konzentriert, etwa die Auswirkungen, die Leben auf die Zusammensetzung der Atmosphäre des betreffenden Planeten hat.

Wird die Oberfläche eines Exoplaneten allerdings von einer bestimmten Lebensform dominiert, könnte ein direkterer Nachweis von Leben möglich sein: anhand des Lichts, das von Organismen reflektiert wird und dabei eine charakteristische Färbung annimmt.

Astronomen untersuchen Planeten, indem sie das Sternenlicht auffangen, das von Atmosphäre und Oberfläche des Planeten reflektiert wird. Stehen Jupiter oder Venus hell leuchtend am Himmel, dann handelt es sich bei ihrem Licht um Sonnenlicht, das von diesen Planeten reflektiert wird.

Außerirdische Astronomen, die detaillierte Beobachtungen unseres Heimatplaneten vornehmen, würden feststellen, dass ein Teil des von der Erde reflektierten Lichts grün eingefärbt ist, weil es von Bäumen und anderen Pflanzen reflektiert wurde.

Entsprechend könnte auch ein Organismus, der hinreichend große Teile einer Exoplanetenoberfläche bedeckt, direkt nachgewiesen werden, indem man die Färbung misst, die er dem reflektierten Licht aufprägt. Diese Färbung wiederum hängt von den Pigmenten ab, also den Farbstoffen, die der Organismus enthält.

Die Details der Färbung lassen sich im Spektrum des Lichts nachweisen, also in der Zerlegung des Lichts in seine Regenbogenfarben. In einem solchen Spektrum hinterlassen unterschiedliche Farbstoffe unterschiedliche Intensitätsmuster - das chemische Analogon eines Fingerabdrucks, der zur Identifikation der unterschiedlichen Arten von Mikroorganismen genutzt werden kann.

Jetzt hat sich eine Gruppe von Astronomen und Biologen unter der Leitung von Siddharth Hegde daran gemacht, die Vielfalt der Möglichkeiten solcher chemischer Fingerabdrücke zu erkunden. Hegde, während dieser Forschungen Doktorand am Max-Planck-Institut für Astronomie, und Lisa Kaltenegger (Direktorin des Institute for Pale Blue Dots an der Cornell-Universität), taten sich dazu mit der Biologin Lynn Rothschild, ihrem Postdoktoranden Ivan Paulino-Lima und dem Biologen Ryan Kent zusammen, die am Ames Research Center der NASA arbeiten.

Das gemeinsame Ziel: herauszufinden, welche chemischen Fingerabdrücke unterschiedlichen Mikroorganismen entsprechen, und was das für die Färbungsmöglichkeiten für die Oberflächen von Exoplaneten bedeutet.

Zu diesem Zweck stellte das Team Kulturen von 137 unterschiedlichen Arten (Spezies) von Mikroorganismen zusammen: 36 aus existierenden Sammlungen von Kulturen, 100 die Paulino-Lima zusammengestellt hatte sowie einen Organismus, den Rocco Mancinelli vom Bay Area Environmental Research Institute am Ames-Standort Mountain View isoliert hatte.

Hauptkriterium bei der Auswahl der Arten war es, eine möglichst große Vielfalt an Pigmentierungen zu bekommen: Die 137 Organismen weisen eine große Farbvielfalt auf und stammen aus ganz unterschiedlichen Lebensräumen, von der chilenischen Atacamawüste in Chile bis zu Hawaianischem Salzwasser und Holzbauten an einer Solequelle im Boone's Lick State Park in Missouri.

Bei ihren Untersuchungen ließen die Forscher in kontrollierter Weise Licht auf jede der Kulturen fallen, maßen den chemischen Fingerabdruck des reflektierten Lichts und stellten ihre Ergebnisse in einem Online-Katalog zusammen. Der Katalog enthält Reflexionsspektren bei sichtbaren und nahinfraroten Wellenlängen von 0,35 bis 2,5 Mikrometer. Er ist der vollständigste und vielfältigste seiner Art, und der erste Katalog, der direkt im Hinblick auf die Oberflächeneigenschaften von Exoplaneten zusammengestellt wurde.

Das Team plant, noch weitere Proben zusammeln und den Katalog so zu erweitern, dass er eine noch größere Vielfalt an Mikroorganismen erfasst. Das Ergebnis sollte nicht nur für Astrobiologen interessant sein, sondern auch für Astronomen, die Modelle für Planetenatmosphären berechnen. Der Nachweis solcher chemischen Fingerabdrücke von Organismen auf einer Planetenoberfläche stellt allerdings selbst für die nächste Generation von Teleskopen eine beachtliche Herausforderung dar.

Derzeit ist es noch nicht möglich, reflektiertes Licht eines Exoplaneten von ähnlicher Größe wie die Erde zu beobachten - solch ein Planet würde durch seinen Stern schlicht überstrahlt. Kaltenegger beschreibt den Nutzen der Datenbank wie folgt: "Diese Datenbank gibt uns erste Einblicke in die Vielfalt an nachweisbaren Lebensspuren auf den vielen verschiedenen Welten, die es da draußen geben könnte."

Kontaktinformationen

Siddharth Hegde (Erstautor)
Telefon: (+49|0) 6221 528-432
E-Mail: hegde@mpia.de

Lisa Kaltenegger (Koautorin)
Institute for Pale Blue Dots, Cornell University
Telefon:(+001) 607 255 35 07
E-Mail: lkaltenegger@astro.cornell.edu

Lynn Rothschild (Koautorin)
NASA Ames Research Center
Telefon:(+1) 650 604 65 25
E-Mail:lynn.j.rothschild@nasa.gov

Anna Ho (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221528-237
E-Mail: annaho@mpia.de

Markus Pössel (Öffentlichkeitsarbeit)
Max-Planck-Institut für Astronomie
Telefon: (+49|0) 6221 528-261
E-Mail: pr@mpia.de

Hintergrundinformationen

Die hier beschriebenen Ergebnisse wurden veröffentlicht in den Proceedings of the National Academy of Sciences of the United States of America (PNAS) als Hegde et al.: "Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life."

Die Koautoren sind Siddharth Hegde (MPIA), Ivan G. Paulino-Lima (NASA Postdoctoral Program Fellow, NASA Ames Research Center), Ryan Kent (UCSC UARC at NASA Ames), Lisa Kaltenegger (MPIA und Institute for Pale Blue Dots, Cornell University) und Lynn Rothschild (NASA Ames).

Die Arbeit wurde im Rahmen des NASA Planetary Biology Internship Award (PBI) durchgeführt, den Hegde 2013 erhielt. Ab Mai 2015 wird Hegde als Postdoktorand am Institute for Pale Blue Dots an der Cornell-Universität forschen; dort befinden sich auch die Server der Biosignature Database, online zugänglich unter der URL

http://biosignatures.astro.cornell.edu

Weitere Informationen:

http://www.mpia.de/news/wissenschaft/2015-03-Biosignaturen - Online-Version der Pressemitteilung mit weiteren Informationen und Bildern

Dr. Markus Pössel | Max-Planck-Institut für Astronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie