Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus der Fusionsforschung in die Medizintechnik

26.11.2014

Spezialwerkstoffe aus Wolfram: entwickelt für Fusionsexperimente – in Röntgen-Röhren einsetzbar?

Gibt es für die extrem belastbaren Spezialwerkstoffe aus Wolfram, die für Bauteile von Fusionsanlagen entwickelt wurden, auch andere Anwendungsmöglichkeiten? Ja, sagt Mathias Sommerer, der dieser Frage in einer von der Siemens AG finanzierten Doktorarbeit nachging, die er an der Technischen Universität München anfertigte. Die nötigen Informationen aus der Fusionsforschung sammelte er bei den Materialspezialisten im Max-Planck-Institut für Plasmaphysik (IPP) in Garching.


Eine Probe foliengegossenen Wolframs nach vielfacher Belastung: Im Rasterelektronenmikroskop wird die gewünschte feinkörnige Mikrostruktur sichtbar.

Foto: Mathias Sommerer

Für seine Doktorarbeit machte sich Mathias Sommerer im IPP auf die Suche nach Ergebnissen aus der Fusionsforschung, die für die industrielle Anwendung nutzbar sein könnten. Fündig wurde er bei den Wissenschaftlern, die die Wechselwirkung des heißen Fusionsplasmas mit den Wänden des umgebenden Gefäßes untersuchen. Hierfür entwickeln sie Materialien, die hohen Belastungen standhalten können.

Ziel der Fusionsforscher ist es, die Energieproduktion der Sonne auf der Erde nachzuahmen. Ein Fusionskraftwerk soll aus der Verschmelzung von Atomkernen Strom erzeugen. Weil das Fusionsfeuer erst bei einer Temperatur von über 100 Millionen Grad zündet, darf der heiße Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit den kalten Wänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer.

Nur an genau definierten Stellen – im so genannten Divertor – hat das Plasma Wandkontakt. Für diese stark beanspruchten Bauteile hat sich Wolfram bewährt, das Metall mit dem höchsten Schmelzpunkt. Dies haben umfangreiche Untersuchungen im IPP gezeigt. Dabei hat man sich auch um eine Schwachstelle des ansonsten sehr robusten Materials gekümmert: Wolfram ist spröde und daher schwierig zu bearbeiten; bei Belastung bilden sich Risse und das Material kann brüchig werden.

In der Fusionsforschung hat man hierfür Lösungsansätze gefunden. Durch Legierungszusätze oder die besondere Mikrostrukturierung der Werkstoffe, die in verschiedenen Varianten im IPP und andernorts untersucht werden, lassen sich die Eigenschaften des Materials stark verbessern. Genau dies könnte laut Mathias Sommerer auch für andere Anwendungen interessant sein, etwa für die Anoden in Röntgen-Geräten, die ebenfalls aus Werkstoffen auf Wolframbasis gefertigt werden: „Die gepulste Wärmelast, die Röntgen-Anoden aushalten müssen, entspricht in etwa der Wechselbelastung, die in Fusionsanlagen bei bestimmten Plasma-Instabilitäten auf den Divertorplatten ankommt“.

Die mit dem Element Rhenium legierten Wolfram-Varianten, die in der Industrie bislang eingesetzt werden, sind vergleichsweise kostenträchtig. Mathias Sommerer versuchte es daher nach dem Vorbild der Fusionsforschung mit reinem, aber besonders feinkörnig aufgebautem Wolfram: Bei Belastung sorgt die feinkörnige Mikrostruktur für kürzere Risse, die sich zudem weniger gut ausbreiten, weil sie an den vielen Korngrenzen aufgehalten werden.

Die für Bauteile von Fusionsanlagen entwickelten Herstellungsverfahren – zum Beispiel der Pulverspritzguss, der am Karlsruher Institut für Technologie untersucht wird – sind für die industriell gewünschten größeren und flachen Bauteile jedoch ungünstig. Mathias Sommerer nutzte daher eine neue Fertigungsmethode, das Foliengießen: Ein Schlicker aus pulverisiertem Wolfram und organischen Bindemitteln wird auf ein laufendes Transportband gegossen. Beim anschließenden Erhitzen bis auf rund 1800 Grad sintert das weiche Material zu einem festen Wolfram-Blech zusammen. Unter dem Rasterelektronenmikroskop im IPP zeigte sich dann der erwünschte feinkörnige Aufbau.

Akademisch betreut wurden diese Arbeiten an der Technischen Universität München von Prof. Dr. Ewald Werner vom Lehrstuhl für Werkstoffkunde und Werkstoffmechanik in der Fakultät Maschinenwesen, die mit dem IPP durch eine gemeinsame Berufung verbunden ist. Die Finanzierung lief über die Siemens AG, deren Sparte Siemens Healthcare zu den großen Herstellern von Röntgengeräten in Europa zählt. Im Versuchslabor in Erlangen wird das mittlerweile zum Patent angemeldete Verfahren zurzeit getestet.

Dabei werden die Probestücke mit einem Elektronenstrahl beschossen – ähnlich wie die Anode in einem Röntgengerät. Tatsächlich zeigte sich das erwartete günstigere Bruchverhalten. „Wir wollen nun herausfinden“, sagt Siemens-Entwickler Dr. Steffen Walter, „ob die mit dem neuen Verfahren hergestellten Proben in der realen Anwendung über den heutigen Stand der Technik hinausführen.“

Zum Beispiel wird untersucht, ob höhere Standzeiten als bisher zu erreichen sind. „Obwohl der Folienguss noch verbessert werden kann“, meint Mathias Sommerer, „hat es sich schon jetzt gezeigt, dass Kenntnisse aus der Fusionsforschung die Entwicklung industrieller Anwendungen antreiben können und es sich lohnt, nach Synergien zu suchen.“


Weitere Informationen:

http://www.ipp.mpg.de/3798782/08_14?c=2488501

Isabella Milch | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik