Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

AugerPrime sucht kosmische Superbeschleuniger

19.11.2015

Das Pierre-Auger-Observatorium in Argentinien, ein internationales Großexperiment zur Untersuchung der kosmischen Strahlung, wird bis 2025 fortgeführt und zu „AugerPrime“ ausgebaut: Mit neu hinzugefügten Szintillatoren wird das Observatorium, für dessen Projektmanagement das Karlsruher Institut für Technologie (KIT) verantwortlich ist, eine noch detailliertere Messung riesiger Luftschauer erreichen. Dies ist erforderlich, um die kosmischen Objekte zu identifizieren, welche die atomaren Teilchen bis zu höchsten Energien beschleunigen können.

Mitte November trafen sich Wissenschaftler des Observatoriums und Vertreter der Zuwendungsgeber in Malargüe/Argentinien zu einem wissenschaftlichen Symposium über AugerPrime. Eine Vereinbarung zum weiteren Betrieb des Observatoriums bis 2025 wurde bei einem Festakt mit vielen internationalen Gästen aus Wissenschaft und Politik – unter ihnen der argentinische Wissenschaftsminister Lino Barañao – unterzeichnet.


Ein Prototyp von AugerPrime: Jeder existierende Wasser-Cherenkov-Detektor mit 12 000 Litern Wasser wird um einen vier Quadratmeter großen Szintillator erweitert.

Foto: Pierre Auger Collaboration

Das KIT war durch Professor Johannes Blümer vertreten, Bereichsleiter für Physik und Mathematik sowie Mitglied im Aufsichtsgremium von Auger. Er führte die Gäste durch das Protokoll, in dem alle Redner auf die fruchtbaren internationalen Beziehungen verwiesen. ”Dies ist ein guter Tag für die Wissenschaft, für die friedvolle Länderkooperation und auch für die jungen Talente in diesem dynamischen und inspirierenden Umfeld“, erklärt Professor Johannes Blümer.

Das Pierre-Auger-Observatorium in der Provinz Mendoza/Argentinien ist das weltweit größte und bekannteste Projekt zur Untersuchung hochenergetischer kosmischer Strahlung. Seit 1998 arbeiten dabei mehr als 500 Wissenschaftler aus 16 Ländern zusammen. Das KIT stellt die stärkste Einzelgruppe und verantwortet das Projektmanagement.

Um die Quellen der aus der Tiefe des Universums kommenden Strahlung zu ermitteln, beobachtet das 3 000 Quadratkilometer große Pierre-Auger-Observatorium in der argentinischen Pampa die Luftschauer, welche die Atomkerne beim Auftreffen auf die Erdatmosphäre erzeugen.

Ein Oberflächendetektor aus 1 660 Tanks mit hochreinem Wasser, in dem energetische Teilchen Lichtblitze produzieren, und ein Fluoreszenzdetektor aus 27 Teleskopen, die Fluoreszenzlicht in der Atmosphäre beobachten, registrieren die Millionen von Sekundärteilchen und Strahlungsemissionen, welche die kosmischen Teilchen in der Atmosphäre auslösen. Die Beobachtungen dieser Luftschauer werden benutzt, um Eigenschaften der Primärteilchen wie Energie, Richtung und Masse zu bestimmen.

Bisherige Ergebnisse haben neue fundamentale Einsichten zur Natur der hochenergetischen kosmischen Strahlung ermöglicht. Vor allem hat sich gezeigt, dass der Fluss bei den höchsten Energien stark abnimmt und dass die maximale Energie der kosmischen Strahlung nun experimentell zugänglich ist. Bei den höchsten Energien – zigtausendmal höher als der Beschleuniger am CERN je erreichen wird – „implizieren die Daten, dass die Flussunterdrückung in der Tat die maximale Kraft der kosmischen Beschleuniger kennzeichnen könnte“ erklärt Dr. Ralph Engel, Leiter der Gruppe Pierre Auger am Institut für Kernphysik (IKP) des KIT.

Allerdings ist eine noch detailliertere Messung der einzelnen Luftschauer notwendig, um das Rätsel um die Beschleunigungsorte der kosmischen Strahlung höchster Energien zu lösen. Nur mit dem Ausbau des Observatoriums zu AugerPrime können diejenigen kosmischen Objekte identifiziert werden, die in der Lage sind, die atomaren Teilchen bis zu solch hohen Energien zu beschleunigen.

Beim Ausbau des Observatoriums zu AugerPrime wird zu jedem der 1 660 existierenden Wasser-Cherenkov-Detektoren ein großflächiger Plastikszintillator hinzugefügt, der beim Durchgang von energiereichen Teilchen angeregt wird und die Anregungsenergie in Form von Licht wieder abgibt. Dadurch wird es möglich, die verschiedenen Komponenten des Luftschauers effizient zu unterscheiden und damit die Masse einzelner Primärteilchen mit hoher Präzision zu bestimmen. Zusammen mit einer Aktualisierung der Ausleseelektronik und einigen weiteren Maßnahmen wird das Observatorium eine neue Qualität in der Messung riesiger Luftschauer erreichen.

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics