Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augen im Weltall

27.07.2011
Dichte Wolkenschleier über der Venus, steinig-karge Landschaften aus gefrorenem Eis auf dem Saturnmond Titan, weiße Flecken im roten Marssand – es sind Ansichten aus völlig fremden Welten.

Welten, die für den Menschen zwar unerreichbar sind, sich aber mit Hilfe von Weltraumkameras an Bord unbemannter Raumsonden im Bild einfangen lassen. Seit 25 Jahren bieten Weltraumkameras, die Wissenschaftler und Ingenieure am Max-Planck-Institut für Sonnensystemforschung (MPS) im niedersächsischen Katlenburg-Lindau entwickeln und bauen, Einblicke in solch fremde Welten.


Vor 25 Jahren gelang der Halley Multicolour Camera, die am MPS entwickelt und gebaut wurde, die erste Aufnahme eines Kometenkern. © ESA, courtesy of MPAe

Ganz aktuell: Seit dem 16. Juli dieses Jahres kreisen zwei Kameras an Bord der NASA-Raumsonde Dawn um den Asteroiden Vesta, der jenseits der Umlaufbahn des Mars im so genannten Asteroidengürtel seine Bahnen um die Sonne zieht. Genaue Bilder der Oberfläche dieses kosmischen Brockens sollen Wissenschaftlern helfen, die Entwicklungsgeschichte unseres Sonnensystems zu enträtseln.

Die Erfolgsgeschichte der Katlenburg-Lindauer Kamerabauer beginnt mit einem Kometen – und einer günstigen Konstellation. Denn der Komet Halley kommt nur etwa alle 76 Jahre auf seiner Route um die Sonne so nahe an der Erde vorbei wie 1986. Grund genug für die Europäische Weltraumagentur ESA den kosmischen Reisenden mit einer Art Empfangskomitee zu begrüßen: Am 14. März 1986 flog die Raumsonde Giotto nur knapp 600 Kilometer an dem Kometen vorbei. Neben weiteren wissenschaftlichen Instrumenten trug Giotto die Halley Multicolour Camera des MPS an Bord. Beim Vorbeiflug gelang dem Hochpräzisionsinstrument das erste Bild eines Kometenkerns – und damit der Beweis, dass sich in Mitten der Kometen-Koma aus Gas und Staub ein fester Kern verbirgt.

Seitdem hat das MPS acht weiteren wissenschaftlichen Missionen ihre Sehkraft verliehen. Zum jetzigen Zeitpunkt fliegen fünf Kameras aus Katlenburg-Lindau durchs All: zwei an Bord der ESA-Mission Rosetta, die 2014 den Kometen Churyumov-Gerasimenko erreicht; zwei an Bord der NASA-Sonde Dawn und eine an Bord der ESA-Mission Venus Express, die seit 2006 unseren Nachbarplaneten untersucht. „Trotz dieser jahrelangen Erfahrung ist der Bau einer solchen Kamera jedes Mal eine Herausforderung“, sagt Ulrich Christensen, Direktor am MPS. Denn obwohl sich die Kameratechnik in den vergangenen Jahren deutlich weiterentwickelt hat, bleiben die Anforderungen an die Instrumente gewaltig.

Der erste Härtetest ist der Raketenstart selbst. Um sicherzustellen, dass die Hochpräzisionsgeräte die heftigen Erschütterungen unbeschadet überstehen, werden sie zuvor am MPS ausgiebig in der Vibrationstestanlage auf die Probe gestellt: Der schwere Rüttelblock, auf den die Ingenieure die Instrumente montieren, durchläuft mehrere „Schüttelprogramme“, um alle Aspekte des Raketenstarts nachzuempfinden. „Die zweite große Herausforderung für die Kameras sind die niedrigen Temperaturen und das Vakuum im Weltall“, erklärt Holger Sierks vom MPS, der das Kamerateam der Rosetta-Mission leitet, das im Juli 2010 spektakuläre Bilder vom Asteroiden Lutetia lieferte. So müssen die Geräte auch nach jahrelanger Tiefschlafphase während der Reise durchs All am Ziel wieder ordnungsgemäß funktionieren. Um dies zu testen, simulieren die MPS-Wissenschaftler die Bedingungen des Weltalls in Thermal-Vakuum-Kammern.

Spezielle Anforderungen stellen die Weltraummissionen vor allem an den CDD-Chip der Kameras, der als elektronischer Sensor ihr Herzstück bildet. „Bei der Mission Giotto war die CCD-Technik, mit der heute jede digitale Kamera ausgerüstet ist, noch völlig neu“, so Rainer Kramm, MPS-Mitarbeiter im Ruhestand, der die Halley Multicolour Camera und zahlreiche weitere Kameras maßgeblich mitentwickelt hat. Dies war eine unabdingbare Voraussetzung für den Betrieb von Kameras im Weltall. Schließlich können nur die digitalen Bilddaten per Funksignal zurück zur Erde übertragen werden.

Die Auflösung der Kameras, die an Bord aktueller Missionen durchs All reisen, ist zwar oft nicht deutlich höher als die handelsüblicher. „Doch die Auflösung ist längst nicht alles“, erklärt Sierks. Besonders Raumsonden, die zu sehr entlegenen Gebieten des Sonnensystems reisen, können sowieso nur begrenzte Datenmengen zur Erde funken. Doch in Punkto Empfindlichkeit sind die Weltraumkameras ihren irdischen Brüdern weit überlegen. „Viele der Objekte, die wir beobachten, sind ausgesprochen lichtschwach“, begründet dies Sierks. Besonders hohe Anforderungen stellt die Anflugphase einer Mission, während der die Kameras oftmals zur optischen Navigation eingesetzt werden. Hier müssen die Kameras die Himmelskörper schon aus sehr großer Entfernung aufnehmen können. So ist es den MPS-Kameras an Bord der Raumsonde Rosetta beispielsweise Anfang Juni gelungen, den Zielkometen der Mission aus mehr als 150 Millionen Kilometern Entfernung sichtbar zu machen.

Zudem erfordern die Missionen zum Teil sehr kurze Belichtungszeiten. Giotto etwa raste 1986 mit einer Geschwindigkeit von etwa 250 000 Kilometern pro Stunde am Kometen Halley vorbei. „Das ist, als wolle man eine Portrait-Aufnahme vom Piloten eines vorbeizischenden Düsenjets aufnehmen“, erinnert sich Kramm. „Auch die Dawn-Kameras kommen mit Belichtungszeiten von wenigen Millisekunden mühelos zurecht“, ergänzt Andreas Nathues vom MPS, wissenschaftlicher Leiter des Dawn-Kamerateams.

Und somit ist jede Weltraumkamera, die am MPS entsteht, ein kleines Kunstwerk. Speziell entwickelt, um den Anforderungen der betreffenden Mission gerecht zu werden – und um faszinierende Einblicke in fremde Welten zu bieten.

Ansprechpartner
Dr. Birgit Krummheuer
Press and Public Relations
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 173 3958625
Fax: +49 551 5176-702
E-Mail: birgit.krummheuer@ds.mpg.de
Prof. Dr. Ulrich Christensen
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-542
Fax: +49 5556 979-219
E-Mail: christensen@mps.mpg.de
Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 5556 979-433
E-Mail: Nathues@mps.mpg.de
Dr. Holger Sierks
Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau
Telefon: +49 55 56979-242
E-Mail: sierks@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4378431/weltraumkameras

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften